Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform

被引:0
|
作者
Ho, Ben [1 ,3 ,4 ]
Arnoldo, Anthony [5 ]
Zhong, Yvonne [5 ]
Lu, Mei [1 ,3 ]
Torchia, Jonathon [6 ]
Yao, Fupan [1 ,3 ,7 ]
Hawkins, Cynthia [1 ,3 ,5 ]
Huang, Annie [2 ,4 ,7 ,8 ]
机构
[1] Hosp Sick Children, Div Cell Biol, Toronto, ON, Canada
[2] Hosp Sick Children, Div Hematol & Oncol, Toronto, ON, Canada
[3] Hosp Sick Children, Arthur & Sonia Labatt Brain Tumor Res Ctr, Toronto, ON, Canada
[4] Univ Toronto, Fac Med, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[5] Hosp Sick Children, Div Pathol, Toronto, ON, Canada
[6] Cantata Bio LLC, Scotts Valley, CA USA
[7] Univ Toronto, Fac Med, Dept Med Biophys, Toronto, ON, Canada
[8] Hosp Sick Children, Div Hematol & Oncol, 555 Univ Ave, Toronto, ON, Canada
关键词
CNS neoplasm; gene expression profiling; molecular typing; rhabdoid tumor; tumor biomarkers; ATYPICAL TERATOID/RHABDOID TUMORS; CHILDREN;
D O I
10.1093/noajnl/vdae004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings.Methods We have developed an ATRT subgroup predictor assay using a custom genes panel for the NanoString nCounter System and a flexible machine learning classifier package. Seventy-one ATRT primary tumors with matching gene expression array and NanoString data were used to construct a multi-algorithms ensemble classifier. Additional validation was performed using an independent gene expression array against the independently generated dataset. We also analyzed 11 extra-cranial rhabdoid tumors with our classifier and compared our approach against DNA methylation classification to evaluate the result consistency with existing methods.Results We have demonstrated that our novel ensemble classifier has an overall average of 93.6% accuracy in the validation dataset, and a striking 98.9% accuracy was achieved with the high-prediction score samples. Using our classifier, all analyzed extra-cranial rhabdoid tumors are classified as MYC subgroups. Compared with the DNA methylation classification, the results show high agreement, with 84.5% concordance and up to 95.8% concordance for high-confidence predictions.Conclusions Here we present a rapid, cost-effective, and accurate ATRT subgrouping assay applicable for clinical use.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Rapid Diagnosis Of Pyrazinamide Resistant Mdr-Tb Using A Molecular-Based Diagnostic Algorithm
    Simons, S. O.
    Van der Laan, T.
    Mulder, A.
    Van Ingen, J.
    Boeree, M. J.
    Van Soolingen, D.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2014, 189
  • [42] Rapid detection of bacteria in bloodstream infections using a molecular method: a pilot study with a neonatal diagnostic kit
    Mazzucchelli, Iolanda
    Garofoli, Francesca
    Angelini, Micol
    Tinelli, Carmine
    Tzialla, Chryssoula
    Decembrino, Lidia
    MOLECULAR BIOLOGY REPORTS, 2020, 47 (01) : 363 - 368
  • [43] SURVEILLANCE OF MOLECULAR MARKER OF ANTIMALARIAL DRUG RESISTANCE IN SENEGAL BY USING MALARIA RAPID DIAGNOSTIC TEST (RDTS)
    Ndiaye, Magatte
    Nag, Sidsel
    Sow, Doudou
    Sylla, Khadyme
    Faye, Babacar
    Ndiaye, Jean Louis
    Tine, Roger
    Alifrangis, Michael
    Gaye, Oumar
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2015, 93 (04): : 96 - 96
  • [44] Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence
    Deus S Ishengoma
    Sudi Lwitiho
    Rashid A Madebe
    Nyagonde Nyagonde
    Ola Persson
    Lasse S Vestergaard
    Ib C Bygbjerg
    Martha M Lemnge
    Michael Alifrangis
    Malaria Journal, 10
  • [45] Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence
    Ishengoma, Deus S.
    Lwitiho, Sudi
    Madebe, Rashid A.
    Nyagonde, Nyagonde
    Persson, Ola
    Vestergaard, Lasse S.
    Bygbjerg, Ib C.
    Lemnge, Martha M.
    Alifrangis, Michael
    MALARIA JOURNAL, 2011, 10
  • [46] Detection of RAS genes mutation using the Cobas ® method in a private laboratory of pathology: Medical and economical study in comparison to a public platform of molecular biology of cancer
    Albertini, Anne-Flore
    Raoux, Delphine
    Neumann, Frederic
    Rossat, Stephane
    Tabet, Farid
    Pedeutour, Florence
    Duranton-Tanneur, Valerie
    Kubiniek, Valerie
    Vire, Olivier
    Weinbreck, Nicolas
    BULLETIN DU CANCER, 2017, 104 (7-8) : 662 - 674
  • [47] Pathogens detected using a syndromic molecular diagnostic platform in patients hospitalized with severe respiratory illness in South Africa in 2017
    Moleleki, Malefu
    du Plessis, Mignon
    Ndlangisa, Kedibone
    Reddy, Cayla
    Hellferscee, Orienka
    Mekgoe, Omphe
    McMorrow, Meredith
    Walaza, Sibongile
    Cohen, Cheryl
    Tempia, Stefano
    von Gottberg, Anne
    Wolter, Nicole
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2022, 122 : 389 - 397
  • [48] AI-BASED MOLECULAR CLASSIFICATION OF DIFFUSE GLIOMAS USING RAPID, LABEL-FREE OPTICAL HISTOLOGY
    Hollon, Todd
    Jiang, Cheng
    Nasir-Moin, Mustafa
    Kondepudi, Akhil
    Chowdury, Asadur
    Al-Holou, Wajd
    Castro, Maria
    Lowenstein, Pedro
    Wadiura, Lisa Irina
    Widhalm, Georg
    Neuschmelting, Volker
    David, Reinecke
    Von Spreckelsen, Niklas
    Berger, Mitchel S.
    Golfinos, John
    Hervey-Jumper, Shawn L.
    Camelo-Piragua, Sandra
    Lee, Honglak
    Freudiger, Christian
    Orringer, Daniel
    NEURO-ONCOLOGY, 2022, 24 : 169 - 169
  • [49] AI-Based Molecular Classification of Diffuse Gliomas using Rapid, Label-Free Optical Imaging
    Hollon, Todd Charles
    Golfinos, John G.
    Orringer, Daniel A.
    Berger, Mitchel
    Hervey-Jumper, Shawn L.
    Muraszko, Karin M.
    Freudiger, Christian
    Heth, Jason
    Sagher, Oren
    Jiang, Cheng
    Chowdury, Asadur
    Moin, Mustafa Nasir
    Kondepudi, Akhil
    Aabedi, Alexander Arash
    Adapa, Arjun R.
    Al-Holou, Wajd
    Wadiura, Lisa
    Widhalm, Georg
    Neuschmelting, Volker
    Reinecke, David
    Camelo-Piragua, Sandra
    NEUROSURGERY, 2023, 69 : 22 - 23
  • [50] Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data
    Franks, Jennifer M.
    Cai, Guoshuai
    Whitfield, Michael L.
    BIOINFORMATICS, 2018, 34 (11) : 1868 - 1874