Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform

被引:0
|
作者
Ho, Ben [1 ,3 ,4 ]
Arnoldo, Anthony [5 ]
Zhong, Yvonne [5 ]
Lu, Mei [1 ,3 ]
Torchia, Jonathon [6 ]
Yao, Fupan [1 ,3 ,7 ]
Hawkins, Cynthia [1 ,3 ,5 ]
Huang, Annie [2 ,4 ,7 ,8 ]
机构
[1] Hosp Sick Children, Div Cell Biol, Toronto, ON, Canada
[2] Hosp Sick Children, Div Hematol & Oncol, Toronto, ON, Canada
[3] Hosp Sick Children, Arthur & Sonia Labatt Brain Tumor Res Ctr, Toronto, ON, Canada
[4] Univ Toronto, Fac Med, Dept Lab Med & Pathobiol, Toronto, ON, Canada
[5] Hosp Sick Children, Div Pathol, Toronto, ON, Canada
[6] Cantata Bio LLC, Scotts Valley, CA USA
[7] Univ Toronto, Fac Med, Dept Med Biophys, Toronto, ON, Canada
[8] Hosp Sick Children, Div Hematol & Oncol, 555 Univ Ave, Toronto, ON, Canada
关键词
CNS neoplasm; gene expression profiling; molecular typing; rhabdoid tumor; tumor biomarkers; ATYPICAL TERATOID/RHABDOID TUMORS; CHILDREN;
D O I
10.1093/noajnl/vdae004
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings.Methods We have developed an ATRT subgroup predictor assay using a custom genes panel for the NanoString nCounter System and a flexible machine learning classifier package. Seventy-one ATRT primary tumors with matching gene expression array and NanoString data were used to construct a multi-algorithms ensemble classifier. Additional validation was performed using an independent gene expression array against the independently generated dataset. We also analyzed 11 extra-cranial rhabdoid tumors with our classifier and compared our approach against DNA methylation classification to evaluate the result consistency with existing methods.Results We have demonstrated that our novel ensemble classifier has an overall average of 93.6% accuracy in the validation dataset, and a striking 98.9% accuracy was achieved with the high-prediction score samples. Using our classifier, all analyzed extra-cranial rhabdoid tumors are classified as MYC subgroups. Compared with the DNA methylation classification, the results show high agreement, with 84.5% concordance and up to 95.8% concordance for high-confidence predictions.Conclusions Here we present a rapid, cost-effective, and accurate ATRT subgrouping assay applicable for clinical use.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A portable microfluidic platform for rapid molecular diagnostic testing of patients with myeloproliferative neoplasms
    Wang, Hua
    Zhang, Xinju
    Xu, Xiao
    Zhang, Qunfeng
    Wang, Hengliang
    Li, Dong
    Kang, Zhihua
    Wu, Zhiyuan
    Tang, Yigui
    An, Zhenhua
    Guan, Ming
    SCIENTIFIC REPORTS, 2017, 7
  • [22] A portable microfluidic platform for rapid molecular diagnostic testing of patients with myeloproliferative neoplasms
    Hua Wang
    Xinju zhang
    Xiao Xu
    Qunfeng Zhang
    Hengliang Wang
    Dong Li
    Zhihua Kang
    Zhiyuan Wu
    Yigui Tang
    Zhenhua An
    Ming Guan
    Scientific Reports, 7
  • [23] A Rapid Host Response Blood Test for Bacterial/Viral Infection Discrimination Using a Portable Molecular Diagnostic Platform
    Iglesias-Ussel, Maria D.
    O'Grady, Nicholas
    Anderson, Jack
    Mitsis, Paul G.
    Burke, Thomas W.
    Henao, Ricardo
    Scavetta, Joseph
    Camilleri, Clare
    Naderi, Sepideh
    Carittini, Amanda
    Perelman, Max
    Myers, Rachel A.
    Ginsburg, Geoffrey S.
    Ko, Emily R.
    Mcclain, Micah T.
    van Westrienen, Jesse
    Tsalik, Ephraim L.
    Tillekeratne, L. Gayani
    Woods, Christopher W.
    OPEN FORUM INFECTIOUS DISEASES, 2025, 12 (01):
  • [24] Profiling circulating tumor cell RNA from a large blood screening volume: A pilot study using diagnostic leukapheresis followed by the NanoString low RNA input nCounter assay
    Dong, Liang
    Huang, Chung-Ying
    Lu, Changxue
    Reyes, Diane
    Amend, Sarah R.
    Luo, Jun
    Pienta, Kenneth
    CANCER RESEARCH, 2020, 80 (16)
  • [25] A Quantitative, Multiplexed RNA Detection Platform for Rapid Pathogen Identification and Phenotypic Antibiotic Susceptibility Testing (AST) using NanoString Technology
    Bhattacharyya, R. P.
    Khafizov, R.
    Boykin, R.
    Dunaway, D.
    Wu, L.
    Liu, C. J.
    Son, S. S.
    Bandyopadhyay, N.
    Walker, M.
    Shoresh, N.
    Livny, J.
    Beechem, J.
    Hung, D. T.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2018, 20 (06): : 954 - 954
  • [26] Development and Implementation of a Molecular Diagnostic Platform for Daily Rapid Detection of 15 Respiratory Viruses
    Tivejung-Lindell, Annika
    Rotzen-Ostlund, Maria
    Gupta, Shawon
    Ullstrand, Richard
    Grillner, Lena
    Zweygberg-Wirgart, Benita
    Allander, Tobias
    JOURNAL OF MEDICAL VIROLOGY, 2009, 81 (01) : 167 - 175
  • [27] Portable molecular diagnostic platform for rapid point-of-care detection of mpox and other diseases
    Cavuto, Matthew L.
    Malpartida-Cardenas, Kenny
    Pennisi, Ivana
    Pond, Marcus J.
    Mirza, Sohail
    Moser, Nicolas
    Comer, Mark
    Stokes, Isobel
    Eke, Lucy
    Lant, Sian
    Szostak-Lipowicz, Katarzyna M.
    Miglietta, Luca
    Stringer, Oliver W.
    Mantikas, Katerina-Theresa
    Sumner, Rebecca P.
    Bolt, Frances
    Sriskandan, Shiranee
    Holmes, Alison
    Georgiou, Pantelis
    Ulaeto, David O.
    de Motes, Carlos Maluquer
    Rodriguez-Manzano, Jesus
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [28] A Rapid Antimicrobial Resistance Diagnostic Platform for Staphylococcus aureus Using Recombinase Polymerase Amplification
    Lin, Chuangxin
    Zeng, Yongmei
    Zhu, Zhihong
    Liao, Jiayu
    Yang, Tiandan
    Liu, Yaqun
    Wei, Huagui
    Li, Jiamin
    Ma, Jibin
    Wu, Xiaoqing
    Lin, Guangyu
    Lin, Liyun
    Chen, Liying
    Huang, Huiying
    Chen, Weizhong
    Wang, Junli
    Wen, Feiqiu
    Lin, Min
    MICROBIOLOGY SPECTRUM, 2023, 11 (02):
  • [29] Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy
    Livermore, Laurent James
    Isabelle, Martin
    Bell, Ian Mac
    Scott, Connor
    Walsby-Tickle, John
    Gannon, Joan
    Plaha, Puneet
    Vallance, Claire
    Ansorge, Olaf
    NEURO-ONCOLOGY ADVANCES, 2019, 1 (01)
  • [30] Dragonfly Molecular Diagnostic Platform: A Rapid Point-of-Care Solution for Monkeypox and Skin Lesion Pathogens
    Cardenas, Kenny
    Cavuto, Matthew
    Pond, Marcus
    Pennisi, Ivana
    Mirza, Sohail
    Comer, Mark
    Stokes, Isobel
    Lant, Sian
    Sumner, Rebecca P.
    Miglietta, Luca
    Bolt, Frankie
    Holmes, Alison
    Sriskandan, Shiranee
    Ulaeto, David
    de Motes, Carlos Maluquer
    Rodriguez-Manzano, Jesus
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2025, 152 : 11 - 12