PARTITION COMPLEXES AND TREES

被引:1
|
作者
Heuts, Gijs [1 ]
Moerdijk, Ieke [1 ]
机构
[1] Univ Utrecht, Math Inst, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
KOSZUL DUALITY; OPERADS; MODEL;
D O I
10.1090/proc/16300
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a functor from the partition complex of a finite set A to a category of trees with leaves labelled by A and prove that it is homotopy initial. This construction and our proof are elementary and require very few preliminaries, but imply an equivalence between different bar constructions of an operad in great generality.
引用
收藏
页码:2723 / 2732
页数:10
相关论文
共 50 条
  • [1] From partition trees to semantic trees
    Giro, Xavier
    Marques, Ferran
    MULTIMEDIA CONTENT REPRESENTATION, CLASSIFICATION AND SECURITY, 2006, 4105 : 306 - 313
  • [2] Optimal Partition Trees
    Timothy M. Chan
    Discrete & Computational Geometry, 2012, 47 : 661 - 690
  • [3] Optimal Partition Trees
    Chan, Timothy M.
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 1 - 10
  • [4] On the partition dimension of trees
    Rodriguez-Velazquez, Juan A.
    Gonzalez Yero, Ismael
    Lemanska, Magdalena
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 204 - 209
  • [5] DYNAMIC PARTITION TREES
    SCHIPPER, H
    OVERMARS, MH
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 447 : 404 - 417
  • [6] EFFICIENT PARTITION TREES
    MATOUSEK, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) : 315 - 334
  • [7] Optimal Partition Trees
    Chan, Timothy M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (04) : 661 - 690
  • [8] DYNAMIC PARTITION TREES
    SCHIPPER, H
    OVERMARS, MH
    BIT, 1991, 31 (03): : 421 - 436
  • [9] On path partition dimension of trees
    Marinescu-Ghemeci, Ruxandra
    ARS COMBINATORIA, 2015, 123 : 17 - 32
  • [10] Weak partition properties on trees
    Hrusak, Michael
    Simon, Petr
    Zindulka, Ondrej
    ARCHIVE FOR MATHEMATICAL LOGIC, 2013, 52 (5-6): : 543 - 567