PARTITION COMPLEXES AND TREES

被引:1
|
作者
Heuts, Gijs [1 ]
Moerdijk, Ieke [1 ]
机构
[1] Univ Utrecht, Math Inst, Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
KOSZUL DUALITY; OPERADS; MODEL;
D O I
10.1090/proc/16300
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a functor from the partition complex of a finite set A to a category of trees with leaves labelled by A and prove that it is homotopy initial. This construction and our proof are elementary and require very few preliminaries, but imply an equivalence between different bar constructions of an operad in great generality.
引用
收藏
页码:2723 / 2732
页数:10
相关论文
共 50 条
  • [31] PARTITION ENERGY OF SOME TREES AND THEIR GENERALIZED COMPLEMENTS
    Sampathkumar, E.
    Roopa, S., V
    Vidya, K. A.
    Sriraj, M. A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (02): : 521 - 531
  • [32] A new method for counting trees with vertex partition
    YanPei Liu
    Science in China Series A: Mathematics, 2008, 51 : 2000 - 2004
  • [33] A partition-based relaxation for Steiner trees
    Jochen Könemann
    David Pritchard
    Kunlun Tan
    Mathematical Programming, 2011, 127 : 345 - 370
  • [34] A new method for counting trees with vertex partition
    LIU YanPei Institute of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2008, (11) : 2000 - 2004
  • [35] A new method for counting trees with vertex partition
    Liu YanPei
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (11): : 2000 - 2004
  • [36] Clustering, Community Partition and Disjoint Spanning Trees
    Zhang, Cun-Quan
    Ou, Yongbin
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (03)
  • [37] NUMBER OF PLANTED PLANE TREES WITH GIVEN PARTITION
    TUTTE, WT
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (03): : 272 - &
  • [38] Randomized Partition Trees for Nearest Neighbor Search
    Sanjoy Dasgupta
    Kaushik Sinha
    Algorithmica, 2015, 72 : 237 - 263
  • [39] CONTOUR DETECTION USING BINARY PARTITION TREES
    Pont-Tuset, Jordi
    Marques, Ferran
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1609 - 1612
  • [40] A partition-based relaxation for Steiner trees
    Koenemann, Jochen
    Pritchard, David
    Tan, Kunlun
    MATHEMATICAL PROGRAMMING, 2011, 127 (02) : 345 - 370