EFFICIENT PARTITION TREES

被引:198
|
作者
MATOUSEK, J [1 ]
机构
[1] FREE UNIV BERLIN, W-1000 BERLIN 33, GERMANY
关键词
D O I
10.1007/BF02293051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a theorem on partitioning point sets in E(d) (d fixed) and give an efficient construction of partition trees based on it. This yields a simplex range searching structure with linear space, O(n log n) deterministic preprocessing time, and O(n1-1/d(log n)O(1)) query time. With O(n1 + delta)) preprocessing time, where delta is an arbitrary positive constant, a more complicated data structure yields query time O(n1-1/d(log log n)O(1)). This attains the lower bounds due to Chazelle [C1] up to polylogarithmic factors, improving and simplifying previous results of Chazelle et al. [CSW]. The partition result implies that, for r(d) < n1 - delta, a (1/r)-approximation of size O(r(d)) with respect to simplices for an n-point set in E(d) can be computed in O(n log r) deterministic time. A (1/r)-cutting of size O(r(d)) for a collection of n hyperplanes in E(d) can be computed in O(n log r) deterministic time, provided that r less-than-or-equal-to n1/(2d - 1).
引用
收藏
页码:315 / 334
页数:20
相关论文
共 50 条
  • [1] From partition trees to semantic trees
    Giro, Xavier
    Marques, Ferran
    MULTIMEDIA CONTENT REPRESENTATION, CLASSIFICATION AND SECURITY, 2006, 4105 : 306 - 313
  • [2] Optimal Partition Trees
    Timothy M. Chan
    Discrete & Computational Geometry, 2012, 47 : 661 - 690
  • [3] Optimal Partition Trees
    Chan, Timothy M.
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 1 - 10
  • [4] On the partition dimension of trees
    Rodriguez-Velazquez, Juan A.
    Gonzalez Yero, Ismael
    Lemanska, Magdalena
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 204 - 209
  • [5] DYNAMIC PARTITION TREES
    SCHIPPER, H
    OVERMARS, MH
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 447 : 404 - 417
  • [6] PARTITION COMPLEXES AND TREES
    Heuts, Gijs
    Moerdijk, Ieke
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2723 - 2732
  • [7] Optimal Partition Trees
    Chan, Timothy M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (04) : 661 - 690
  • [8] DYNAMIC PARTITION TREES
    SCHIPPER, H
    OVERMARS, MH
    BIT, 1991, 31 (03): : 421 - 436
  • [9] On path partition dimension of trees
    Marinescu-Ghemeci, Ruxandra
    ARS COMBINATORIA, 2015, 123 : 17 - 32
  • [10] Weak partition properties on trees
    Hrusak, Michael
    Simon, Petr
    Zindulka, Ondrej
    ARCHIVE FOR MATHEMATICAL LOGIC, 2013, 52 (5-6): : 543 - 567