DYNAMIC PARTITION TREES

被引:4
|
作者
SCHIPPER, H
OVERMARS, MH
机构
[1] UNIV UTRECHT,DEPT COMP SCI,3508 TB UTRECHT,NETHERLANDS
[2] UNIV GRONINGEN,DEPT COMP SCI,9700 AV GRONINGEN,NETHERLANDS
来源
BIT | 1991年 / 31卷 / 03期
关键词
D O I
10.1007/BF01933260
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we study dynamic variants of conjugation trees and related structures that have recently been introduced for performing various types of queries on sets of points and line segments, like half-planar range searching, shooting, intersection queries, etc. For most of these types of queries dynamic structures are obtained with an amortized update time of O(log2 n) (or less) with only minor increases in query times. As an application of the method we obtain an output-sensitive method for hidden surface removal in a set of n triangles that runs in time 0(nlog n + n.kg-gamma) where gamma = log2 ((1 + square-root 5)/2) almost-equal-to 0.695 and k is the size of the visibility map obtained.
引用
收藏
页码:421 / 436
页数:16
相关论文
共 50 条
  • [1] DYNAMIC PARTITION TREES
    SCHIPPER, H
    OVERMARS, MH
    LECTURE NOTES IN COMPUTER SCIENCE, 1990, 447 : 404 - 417
  • [2] Dynamic Partition of Collaborative Multiagent Based on Coordination Trees
    Min, Fang
    Groen, Frans C. A.
    Hao, Li
    INTELLIGENT AUTONOMOUS SYSTEMS 12 , VOL 2, 2013, 194 : 503 - +
  • [3] From partition trees to semantic trees
    Giro, Xavier
    Marques, Ferran
    MULTIMEDIA CONTENT REPRESENTATION, CLASSIFICATION AND SECURITY, 2006, 4105 : 306 - 313
  • [4] Optimal Partition Trees
    Timothy M. Chan
    Discrete & Computational Geometry, 2012, 47 : 661 - 690
  • [5] Optimal Partition Trees
    Chan, Timothy M.
    PROCEEDINGS OF THE TWENTY-SIXTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'10), 2010, : 1 - 10
  • [6] On the partition dimension of trees
    Rodriguez-Velazquez, Juan A.
    Gonzalez Yero, Ismael
    Lemanska, Magdalena
    DISCRETE APPLIED MATHEMATICS, 2014, 166 : 204 - 209
  • [7] PARTITION COMPLEXES AND TREES
    Heuts, Gijs
    Moerdijk, Ieke
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2723 - 2732
  • [8] EFFICIENT PARTITION TREES
    MATOUSEK, J
    DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (03) : 315 - 334
  • [9] Optimal Partition Trees
    Chan, Timothy M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2012, 47 (04) : 661 - 690
  • [10] On path partition dimension of trees
    Marinescu-Ghemeci, Ruxandra
    ARS COMBINATORIA, 2015, 123 : 17 - 32