Comparative asymptotics for discrete semiclassical orthogonal polynomials

被引:1
|
作者
Dominici, Diego [1 ]
机构
[1] Johannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
Semiclassical orthogonal polynomials; asymptotic expansions; ordinary differential equations; RELATIVE ASYMPTOTICS; RECURRENCE COEFFICIENTS; RESPECT; CHARLIER; LATTICES; SERIES;
D O I
10.1142/S1664360722500102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ratio P-n(x;z)/phi(n)(x) asymptotically as n -> infinity, where the polynomials P-n(x; z) are orthogonal with respect to a discrete linear functional and phi(n)(x) denote the falling factorial polynomials. We give recurrences that allow the computation of high order asymptotic expansions of P-n(x; z) and give examples for most discrete semiclassical polynomials of class s <=( )2. We show several plots illustrating the accuracy of our results.
引用
收藏
页数:36
相关论文
共 50 条
  • [41] THE ASYMPTOTICS OF A CONTINUOUS ANALOG OF ORTHOGONAL POLYNOMIALS
    WIDOM, H
    JOURNAL OF APPROXIMATION THEORY, 1994, 77 (01) : 51 - 64
  • [42] Ratio Asymptotics for Multiple Orthogonal Polynomials
    Van Assche, Walter
    MODERN TRENDS IN CONSTRUCTIVE FUNCTION THEORY, 2016, 661 : 73 - +
  • [43] Relative asymptotics for orthogonal matrix polynomials
    Branquinho, A.
    Marcellan, E.
    Mendes, A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1458 - 1481
  • [44] Zero asymptotics of Laurent orthogonal polynomials
    Hernandez, MB
    Finkelshtein, AM
    JOURNAL OF APPROXIMATION THEORY, 1996, 85 (03) : 324 - 342
  • [45] Strong asymptotics for Sobolev orthogonal polynomials
    Finkelshtein, AM
    Cabrera, HP
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 78 (1): : 143 - 156
  • [46] THE RIEMANN-HILBERT APPROACH TO GLOBAL ASYMPTOTICS OF DISCRETE ORTHOGONAL POLYNOMIALS WITH INFINITE NODES
    Ou, Chunhua
    Wong, R.
    ANALYSIS AND APPLICATIONS, 2010, 8 (03) : 247 - 286
  • [47] A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials
    Vinet, L
    Zhedanov, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (01) : 41 - 48
  • [48] A matrix approach for the semiclassical and coherent orthogonal polynomials
    Garza, Lino G.
    Garza, Luis E.
    Marcellan, Francisco
    Pinzon-Cortes, Natalia C.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 459 - 471
  • [49] A Survey On D-Semiclassical Orthogonal Polynomials
    Ghressi, Abdallah
    Kheriji, Lotfi
    APPLIED MATHEMATICS E-NOTES, 2010, 10 : 210 - 234
  • [50] On semiclassical orthogonal polynomials via polynomial mappings
    Castillo, K.
    de Jesus, M. N.
    Petronilho, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1801 - 1821