Comparative asymptotics for discrete semiclassical orthogonal polynomials

被引:1
|
作者
Dominici, Diego [1 ]
机构
[1] Johannes Kepler Univ Linz, Res Inst Symbol Computat, Altenberger Str 69, A-4040 Linz, Austria
基金
英国工程与自然科学研究理事会;
关键词
Semiclassical orthogonal polynomials; asymptotic expansions; ordinary differential equations; RELATIVE ASYMPTOTICS; RECURRENCE COEFFICIENTS; RESPECT; CHARLIER; LATTICES; SERIES;
D O I
10.1142/S1664360722500102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the ratio P-n(x;z)/phi(n)(x) asymptotically as n -> infinity, where the polynomials P-n(x; z) are orthogonal with respect to a discrete linear functional and phi(n)(x) denote the falling factorial polynomials. We give recurrences that allow the computation of high order asymptotic expansions of P-n(x; z) and give examples for most discrete semiclassical polynomials of class s <=( )2. We show several plots illustrating the accuracy of our results.
引用
收藏
页数:36
相关论文
共 50 条