CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM

被引:9
|
作者
Liu, Chen [1 ]
Masri, Rami [2 ]
Riviere, Beatrice [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, N-0164 Oslo, Norway
[3] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Cahn--Hilliard--Navier--Stokes; discontinuous Galerkin; stability; optimal error bounds; FINITE-ELEMENT APPROXIMATION; ENERGY-STABLE SCHEMES; DISCONTINUOUS GALERKIN METHODS; 2-PHASE INCOMPRESSIBLE FLOWS; ERROR ANALYSIS; 2ND-ORDER; TIME; EQUATION; SOBOLEV; MODEL;
D O I
10.1137/22M1528069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of an energy-stable discontinuous Galerkin algorithm for solving the Cahn-Hilliard-Navier-Stokes equations within a decoupled splitting framework. We show that the proposed scheme is uniquely solvable and mass conservative. The energy dissipation and the L degrees stability of the order parameter are obtained under a CFL-like constraint. Optimal a priori error estimates in the broken gradient norm and in the L2 norm are derived. The stability proofs and error analysis are based on induction arguments and do not require any regularization of the potential function.
引用
收藏
页码:2651 / 2694
页数:44
相关论文
共 50 条
  • [1] On a Class of Higher-Order Fully Decoupled Schemes for the Cahn-Hilliard-Navier-Stokes System
    Li, Xiaoli
    Liu, Zhengguang
    Shen, Jie
    Zheng, Nan
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [2] OPTIMAL CONTROL OF A SEMIDISCRETE CAHN-HILLIARD-NAVIER-STOKES SYSTEM
    Hintermueller, M.
    Wegner, D.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 747 - 772
  • [3] Finite element approximation of a Cahn-Hilliard-Navier-Stokes system
    Kay, David
    Styles, Vanessa
    Welford, Richard
    INTERFACES AND FREE BOUNDARIES, 2008, 10 (01) : 15 - 43
  • [4] A CAHN-HILLIARD-NAVIER-STOKES MODEL WITH DELAYS
    Medjo, T. Tachim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (08): : 2663 - 2685
  • [5] Strong solutions for the stochastic Cahn-Hilliard-Navier-Stokes system
    Deugoue, G.
    Ngana, A. Ndongmo
    Medjo, T. Tachim
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 27 - 76
  • [6] A simple and efficient finite difference scheme to the Cahn-Hilliard-Navier-Stokes system equations
    Shen, Mingguang
    Li, Ben Q.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2025, 182
  • [7] Convergence analysis of a decoupled pressure-correction SAV-FEM for the Cahn-Hilliard-Navier-Stokes model
    Yang, Jinting
    Yi, Nianyu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 449
  • [8] Homogenization of 2D Cahn-Hilliard-Navier-Stokes system
    Bunoiu, R.
    Cardone, G.
    Kengne, R.
    Woukeng, J. L.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (01) : 377 - 408
  • [9] Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations
    Vorobev, Anatoliy
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [10] Global and Trajectory Attractors for a Nonlocal Cahn-Hilliard-Navier-Stokes System
    Frigeri, Sergio
    Grasselli, Maurizio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (04) : 827 - 856