CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM

被引:9
|
作者
Liu, Chen [1 ]
Masri, Rami [2 ]
Riviere, Beatrice [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, N-0164 Oslo, Norway
[3] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Cahn--Hilliard--Navier--Stokes; discontinuous Galerkin; stability; optimal error bounds; FINITE-ELEMENT APPROXIMATION; ENERGY-STABLE SCHEMES; DISCONTINUOUS GALERKIN METHODS; 2-PHASE INCOMPRESSIBLE FLOWS; ERROR ANALYSIS; 2ND-ORDER; TIME; EQUATION; SOBOLEV; MODEL;
D O I
10.1137/22M1528069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of an energy-stable discontinuous Galerkin algorithm for solving the Cahn-Hilliard-Navier-Stokes equations within a decoupled splitting framework. We show that the proposed scheme is uniquely solvable and mass conservative. The energy dissipation and the L degrees stability of the order parameter are obtained under a CFL-like constraint. Optimal a priori error estimates in the broken gradient norm and in the L2 norm are derived. The stability proofs and error analysis are based on induction arguments and do not require any regularization of the potential function.
引用
收藏
页码:2651 / 2694
页数:44
相关论文
共 50 条
  • [41] TRAJECTORY STATISTICAL SOLUTIONS FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM WITH MOVING CONTACT LINES
    You, Bo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, : 4769 - 4785
  • [42] OPTIMAL CONTROL OF A SEMIDISCRETE CAHN-HILLIARD-NAVIER-STOKES SYSTEM WITH NONMATCHED FLUID DENSITIES
    Hintermueller, Michael
    Keil, Tobias
    Wegner, Donat
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2017, 55 (03) : 1954 - 1989
  • [43] Random attractor for the stochastic Cahn-Hilliard-Navier-Stokes system with small additive noise
    Li, Fang
    You, Bo
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (03) : 546 - 559
  • [44] Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system
    Diegel, Amanda E.
    Wang, Cheng
    Wang, Xiaoming
    Wise, Steven M.
    NUMERISCHE MATHEMATIK, 2017, 137 (03) : 495 - 534
  • [45] ON THE VISCOUS CAHN-HILLIARD-NAVIER-STOKES EQUATIONS WITH DYNAMIC BOUNDARY CONDITIONS
    Cherfils, Laurence
    Petcu, Madalina
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) : 1419 - 1449
  • [46] Nonlocal Cahn-Hilliard-Navier-Stokes systems with shear dependent viscosity
    Frigeri, Sergio
    Grasselli, Maurizio
    Prazak, Dalibor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 753 - 777
  • [47] On fully decoupled MSAV schemes for the Cahn-Hilliard-Navier-Stokes model of two-phase incompressible flows
    Li, Xiaoli
    Shen, Jie
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (03): : 457 - 495
  • [48] Convergence of the solution of the stochastic 3D globally modified Cahn-Hilliard-Navier-Stokes equations
    Deugoue, G.
    Medjo, T. Tachim
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (02) : 545 - 592
  • [49] Stability and Error Analysis of SAV Semi-Discrete Scheme for Cahn-Hilliard-Navier-Stokes Model
    Gao, Haijun
    Li, Xi
    Feng, Minfu
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024,
  • [50] A Linear Unconditionally Stable Scheme for the Incompressible Cahn-Hilliard-Navier-Stokes Phase-Field Model
    Wang, Xue
    Li, Kaitai
    Jia, Hongen
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (04) : 1991 - 2017