CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM

被引:9
|
作者
Liu, Chen [1 ]
Masri, Rami [2 ]
Riviere, Beatrice [3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Simula Res Lab, Dept Numer Anal & Sci Comp, N-0164 Oslo, Norway
[3] Rice Univ, Dept Computat Appl Math & Operat Res, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
Cahn--Hilliard--Navier--Stokes; discontinuous Galerkin; stability; optimal error bounds; FINITE-ELEMENT APPROXIMATION; ENERGY-STABLE SCHEMES; DISCONTINUOUS GALERKIN METHODS; 2-PHASE INCOMPRESSIBLE FLOWS; ERROR ANALYSIS; 2ND-ORDER; TIME; EQUATION; SOBOLEV; MODEL;
D O I
10.1137/22M1528069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis of an energy-stable discontinuous Galerkin algorithm for solving the Cahn-Hilliard-Navier-Stokes equations within a decoupled splitting framework. We show that the proposed scheme is uniquely solvable and mass conservative. The energy dissipation and the L degrees stability of the order parameter are obtained under a CFL-like constraint. Optimal a priori error estimates in the broken gradient norm and in the L2 norm are derived. The stability proofs and error analysis are based on induction arguments and do not require any regularization of the potential function.
引用
收藏
页码:2651 / 2694
页数:44
相关论文
共 50 条
  • [21] On Nonlocal Cahn-Hilliard-Navier-Stokes Systems in Two Dimensions
    Frigeri, Sergio
    Gal, Ciprian G.
    Grasselli, Maurizio
    JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (04) : 847 - 893
  • [22] Simplified conservative discretization of the Cahn-Hilliard-Navier-Stokes equations
    Goulding, Jason
    Ayazi, Mehrnaz
    Shinar, Tamar
    Schroeder, Craig
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 519
  • [23] Regularity Results for a Cahn-Hilliard-Navier-Stokes System with Shear Dependent Viscosity
    Grasselli, Maurizio
    Prazak, Dalibor
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2014, 33 (03): : 271 - 288
  • [24] Analysis of a Linearized Energy Stable Numerical Scheme for a Modified Incompressible Cahn-Hilliard-Navier-Stokes System
    Xue WANG
    Hong-en JIA
    Ming LI
    Kai-tai LI
    Acta Mathematicae Applicatae Sinica, 2023, 39 (03) : 605 - 622
  • [25] A Second Order Numerical Scheme of the Cahn-Hilliard-Navier-Stokes System with Flory-Huggins Potential
    Chen, Wenbin
    Jing, Jianyu
    Liu, Qianqian
    Wang, Cheng
    Wang, Xiaoming
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 35 (03) : 633 - 661
  • [26] Global existence of weak solutions to a nonlocal Cahn-Hilliard-Navier-Stokes system
    Colli, Pierluigi
    Frigeri, Sergio
    Grasselli, Maurizio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 428 - 444
  • [27] Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials
    Frigeri, Sergio
    Grasselli, Maurizio
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 9 (04) : 273 - 304
  • [28] Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D
    Gal, Ciprian G.
    Grasselli, Maurizio
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01): : 401 - 436
  • [29] On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system
    Heida, Martin
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2013, 62 : 126 - 156
  • [30] Error analysis of a decoupled, linear and stable finite element method for Cahn-Hilliard-Navier-Stokes equations
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 421