Finite element approximation of a Cahn-Hilliard-Navier-Stokes system

被引:0
|
作者
Kay, David [1 ]
Styles, Vanessa [2 ]
Welford, Richard [2 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
[2] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semi-discrete and a practical fully discrete finite element approximation of a Cahn-Hilliard-Navier-Stokes system. This system arises in the modelling of multiphase fluid systems. We show order h error estimate between the solution of the system and the solution of the semi-discrete approximation. We also show the convergence of the fully discrete approximation. Finally, we present an efficient implementation of the fully discrete scheme together with some numerical simulations.
引用
收藏
页码:15 / 43
页数:29
相关论文
共 50 条
  • [1] Fully discrete finite element approximation of the stochastic Cahn-Hilliard-Navier-Stokes system
    Deugoue, G.
    Moghomye, B. Jidjou
    Medjo, T. Tachim
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (04) : 3046 - 3112
  • [2] Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations
    Vorobev, Anatoliy
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [3] OPTIMAL CONTROL OF A SEMIDISCRETE CAHN-HILLIARD-NAVIER-STOKES SYSTEM
    Hintermueller, M.
    Wegner, D.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) : 747 - 772
  • [4] A CAHN-HILLIARD-NAVIER-STOKES MODEL WITH DELAYS
    Medjo, T. Tachim
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (08): : 2663 - 2685
  • [5] Strong solutions for the stochastic Cahn-Hilliard-Navier-Stokes system
    Deugoue, G.
    Ngana, A. Ndongmo
    Medjo, T. Tachim
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 27 - 76
  • [6] A simple and efficient finite difference scheme to the Cahn-Hilliard-Navier-Stokes system equations
    Shen, Mingguang
    Li, Ben Q.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2025, 182
  • [7] A Decoupled Energy Stable Adaptive Finite Element Method for Cahn-Hilliard-Navier-Stokes Equations
    Chen, Yaoyao
    Huang, Yunqing
    Yi, Nianyu
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (04) : 1186 - 1212
  • [8] Homogenization of 2D Cahn-Hilliard-Navier-Stokes system
    Bunoiu, R.
    Cardone, G.
    Kengne, R.
    Woukeng, J. L.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (01) : 377 - 408
  • [9] CONVERGENCE OF A DECOUPLED SPLITTING SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES SYSTEM
    Liu, Chen
    Masri, Rami
    Riviere, Beatrice
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2651 - 2694
  • [10] Global and Trajectory Attractors for a Nonlocal Cahn-Hilliard-Navier-Stokes System
    Frigeri, Sergio
    Grasselli, Maurizio
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (04) : 827 - 856