Rigidity of quasi-Einstein metrics: the incompressible case

被引:3
|
作者
Bahuaud, Eric [1 ]
Gunasekaran, Sharmila [2 ]
Kunduri, Hari K. [3 ,4 ]
Woolgar, Eric [5 ,6 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[5] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[6] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Near-horizon geometry; Extreme black holes; Quasi-Einstein equation; NONEXISTENCE;
D O I
10.1007/s11005-023-01753-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As part of a programme to classify quasi-Einstein metrics (M, g, X) on closed manifolds and near-horizon geometries of extreme black holes, we study such spaces when the vector field X is divergence-free but not identically zero. This condition is satisfied by left-invariant quasi-Einstein metrics on compact homogeneous spaces (including the near-horizon geometry of an extreme Myers-Perry black hole with equal angular momenta in two distinct planes) and on certain bundles over Kahler-Einstein manifolds. We find that these spaces exhibit a mild form of rigidity: they always admit a one-parameter group of isometries generated by X. Further geometrical and topological restrictions are also obtained.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] ON QUASI-EINSTEIN WARPED PRODUCTS
    Sular, Sibel
    Ozgur, Cihan
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2012, 58 (02): : 353 - 362
  • [42] On gradient quasi-Einstein solitons
    Wang, Lin Feng
    JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 484 - 494
  • [43] On the Typology of Quasi-Einstein Spaces
    Kiosak, V
    Savchenko, A.
    Khniunin, S.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS 2020), 2020, 2302
  • [44] On pseudo quasi-Einstein manifolds
    Shaikh, Absos Ali
    PERIODICA MATHEMATICA HUNGARICA, 2009, 59 (02) : 119 - 146
  • [45] On generalized quasi-Einstein manifolds
    Mirshafeazadeh, Mir Ahmad
    Bidabad, Behroz
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (03) : 193 - 202
  • [46] On Quasi-Einstein Field Equation
    赵培标
    杨孝平
    Northeastern Mathematical Journal, 2005, (04) : 411 - 420
  • [47] (m, ρ)-Quasi-Einstein Metrics in the Frame-Work of K -Contact Manifolds
    Ghosh, Amalendu
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) : 369 - 376
  • [48] ON QUASI-EINSTEIN FINSLER SPACES
    Bidabad, B.
    Yarahmadi, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2014, 40 (04): : 921 - 930
  • [49] On Mixed Quasi-Einstein Spacetimes
    Suh, Young Jin
    Majhi, Pradip
    De, Uday Chand
    FILOMAT, 2018, 32 (08) : 2707 - 2719
  • [50] Generalized quasi-Einstein metrics and applications on generalized Robertson-Walker spacetimes
    Guler, Sinem
    De, Uday Chand
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)