Rigidity of quasi-Einstein metrics: the incompressible case

被引:3
|
作者
Bahuaud, Eric [1 ]
Gunasekaran, Sharmila [2 ]
Kunduri, Hari K. [3 ,4 ]
Woolgar, Eric [5 ,6 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[5] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[6] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Near-horizon geometry; Extreme black holes; Quasi-Einstein equation; NONEXISTENCE;
D O I
10.1007/s11005-023-01753-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As part of a programme to classify quasi-Einstein metrics (M, g, X) on closed manifolds and near-horizon geometries of extreme black holes, we study such spaces when the vector field X is divergence-free but not identically zero. This condition is satisfied by left-invariant quasi-Einstein metrics on compact homogeneous spaces (including the near-horizon geometry of an extreme Myers-Perry black hole with equal angular momenta in two distinct planes) and on certain bundles over Kahler-Einstein manifolds. We find that these spaces exhibit a mild form of rigidity: they always admit a one-parameter group of isometries generated by X. Further geometrical and topological restrictions are also obtained.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] SMOOTH METRIC MEASURE SPACES AND QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (10)
  • [32] Conformal and Quasi-Einstein Metrics on Pseudo-Euclidean Space
    Flávio Raimundo de Souza
    Keti Tenenblat
    Results in Mathematics, 2009, 56
  • [33] Conformal and Quasi-Einstein Metrics on Pseudo-Euclidean Space
    de Souza, Flavio Raimundo
    Tenenblat, Keti
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 445 - 452
  • [34] Approximating Ricci solitons and quasi-Einstein metrics on toric surfaces
    Hall, Stuart James
    Murphy, Thomas
    NEW YORK JOURNAL OF MATHEMATICS, 2016, 22 : 615 - 635
  • [35] Smooth metric measure spaces, quasi-Einstein metrics, and tractors
    Case, Jeffrey S.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (05): : 1733 - 1762
  • [36] (m,ρ)-quasi-Einstein metrics on(κ,μ)-almost coK ahler manifolds
    Biswasi, Urmila
    Falcitelliii, Maria
    Sarkar, Avijit
    NOTE DI MATEMATICA, 2024, 44 (01): : 85 - 98
  • [37] Static near-horizon geometries and rigidity of quasi-Einstein manifolds
    Bahuaud, Eric
    Gunasekaran, Sharmila
    Kunduri, Hari K.
    Woolgar, Eric
    LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
  • [38] Static near-horizon geometries and rigidity of quasi-Einstein manifolds
    Eric Bahuaud
    Sharmila Gunasekaran
    Hari K. Kunduri
    Eric Woolgar
    Letters in Mathematical Physics, 2022, 112
  • [39] ON QUASI-EINSTEIN SPACETIMES
    Shaikh, Absos Ali
    Yoon, Dae Won
    Hui, Shyamal Kumar
    TSUKUBA JOURNAL OF MATHEMATICS, 2009, 33 (02) : 305 - 326
  • [40] Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds
    Barros, A.
    Ribeiro, E., Jr.
    Silva Filho, J.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 60 - 73