Rigidity of quasi-Einstein metrics: the incompressible case

被引:3
|
作者
Bahuaud, Eric [1 ]
Gunasekaran, Sharmila [2 ]
Kunduri, Hari K. [3 ,4 ]
Woolgar, Eric [5 ,6 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[5] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[6] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Near-horizon geometry; Extreme black holes; Quasi-Einstein equation; NONEXISTENCE;
D O I
10.1007/s11005-023-01753-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As part of a programme to classify quasi-Einstein metrics (M, g, X) on closed manifolds and near-horizon geometries of extreme black holes, we study such spaces when the vector field X is divergence-free but not identically zero. This condition is satisfied by left-invariant quasi-Einstein metrics on compact homogeneous spaces (including the near-horizon geometry of an extreme Myers-Perry black hole with equal angular momenta in two distinct planes) and on certain bundles over Kahler-Einstein manifolds. We find that these spaces exhibit a mild form of rigidity: they always admit a one-parameter group of isometries generated by X. Further geometrical and topological restrictions are also obtained.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Diameter estimate for compact quasi-Einstein metrics
    Wang, Lin Feng
    MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 801 - 809
  • [22] Potential function estimates for quasi-Einstein metrics
    Wang, Lin Feng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (07) : 1986 - 2004
  • [23] Conformally Kahler geometry and quasi-Einstein metrics
    Batat, Wafaa
    Hall, Stuart J.
    Jizany, Ali
    Murphy, Thomas
    MUENSTER JOURNAL OF MATHEMATICS, 2015, 8 (01): : 211 - 228
  • [24] Gap results for compact quasi-Einstein metrics
    Linfeng Wang
    ScienceChina(Mathematics), 2018, 61 (05) : 943 - 954
  • [25] Gap results for compact quasi-Einstein metrics
    Linfeng Wang
    Science China Mathematics, 2018, 61 : 943 - 954
  • [26] Sharp metric obstructions for quasi-Einstein metrics
    Case, Jeffrey S.
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 64 : 12 - 30
  • [27] Cohomogeneity-one quasi-Einstein metrics
    Buttsworth, Timothy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) : 201 - 217
  • [28] Generalized Quasi-Einstein Metrics and Contact Geometry
    Biswas, Gour Gopal
    De, Uday Chand
    Yildiz, Ahmet
    KYUNGPOOK MATHEMATICAL JOURNAL, 2022, 62 (03): : 485 - 495
  • [29] Lower bound of the scalar curvature for quasi-Einstein metrics
    Shen, Wang
    Wang, Lin Feng
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 75
  • [30] F Functional and the First Eigenvalue for Quasi-Einstein Metrics
    Xing, Qiaofang
    Gao, Xiang
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1079 - +