Rigidity of quasi-Einstein metrics: the incompressible case

被引:3
|
作者
Bahuaud, Eric [1 ]
Gunasekaran, Sharmila [2 ]
Kunduri, Hari K. [3 ,4 ]
Woolgar, Eric [5 ,6 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[5] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[6] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Near-horizon geometry; Extreme black holes; Quasi-Einstein equation; NONEXISTENCE;
D O I
10.1007/s11005-023-01753-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As part of a programme to classify quasi-Einstein metrics (M, g, X) on closed manifolds and near-horizon geometries of extreme black holes, we study such spaces when the vector field X is divergence-free but not identically zero. This condition is satisfied by left-invariant quasi-Einstein metrics on compact homogeneous spaces (including the near-horizon geometry of an extreme Myers-Perry black hole with equal angular momenta in two distinct planes) and on certain bundles over Kahler-Einstein manifolds. We find that these spaces exhibit a mild form of rigidity: they always admit a one-parameter group of isometries generated by X. Further geometrical and topological restrictions are also obtained.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Rigidity of quasi-Einstein metrics: the incompressible case
    Eric Bahuaud
    Sharmila Gunasekaran
    Hari K. Kunduri
    Eric Woolgar
    Letters in Mathematical Physics, 114
  • [2] Rigidity of quasi-Einstein metrics
    Case, Jeffrey
    Shu, Yu-Jen
    Wei, Guofang
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) : 93 - 100
  • [3] QUASI-EINSTEIN METRICS
    GUAN, DZD
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1995, 6 (03) : 371 - 379
  • [4] THE NONEXISTENCE OF QUASI-EINSTEIN METRICS
    Case, Jeffrey S.
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) : 277 - 284
  • [5] Quasi-Einstein Kahler metrics
    Pedersen, H
    Tonnesen-Friedman, C
    Valent, G
    LETTERS IN MATHEMATICAL PHYSICS, 1999, 50 (03) : 229 - 241
  • [6] ON NONCOMPACT τ-QUASI-EINSTEIN METRICS
    Wang, Lin Feng
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 254 (02) : 449 - 464
  • [7] On the Rigidity of Generalized Quasi-Einstein Manifolds
    M. Ahmad Mirshafeazadeh
    B. Bidabad
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2029 - 2042
  • [8] On the Rigidity of Generalized Quasi-Einstein Manifolds
    Mirshafeazadeh, M. Ahmad
    Bidabad, B.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 2029 - 2042
  • [9] Rigidity of Einstein manifolds and generalized quasi-Einstein manifolds
    Deng, Yi Hua
    Luo, Li Ping
    Zhou, Li Jun
    ANNALES POLONICI MATHEMATICI, 2015, 115 (03) : 235 - 240
  • [10] Quasi-Einstein metrics and plane waves
    Brozos-Vazquez, M.
    Garcia-Rio, E.
    Gavino-Fernandez, S.
    XX INTERNATIONAL FALL WORKSHOP ON GEOMETRY AND PHYSICS, 2012, 1460 : 174 - 179