Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering

被引:33
|
作者
Gharibshahian, Maliheh [1 ]
Salehi, Majid [2 ,3 ]
Beheshtizadeh, Nima [4 ,5 ]
Kamalabadi-Farahani, Mohammad [2 ]
Atashi, Amir [6 ]
Nourbakhsh, Mohammad-Sadegh [7 ]
Alizadeh, Morteza [2 ]
机构
[1] Shahroud Univ Med Sci, Student Res Comm, Sch Med, Shahroud, Iran
[2] Shahroud Univ Med Sci, Sch Med, Dept Tissue Engn, Shahroud, Iran
[3] Shahroud Univ Med Sci, Tissue Engn & Stem Cells Res Ctr, Shahroud, Iran
[4] Universal Sci Educ & Res Network USERN, Regenerat Med Grp REMED, Tehran, Iran
[5] Univ Tehran Med Sci, Sch Adv Technol Med, Dept Tissue Engn, Tehran, Iran
[6] Shahroud Univ Med Sci, Fac Allied Med Sci, Stem Cell & Tissue Engn Res Ctr, Shahroud, Iran
[7] Semnan Univ, Fac New Sci & Technol, Semnan, Iran
关键词
bone tissue engineering; PCL composites; 3D printing; bone scaffolds; 3D printed PCL; POLYCAPROLACTONE-HYDROXYAPATITE SCAFFOLDS; TRICALCIUM PHOSPHATE SCAFFOLD; MECHANICAL-PROPERTIES; OSTEOGENIC DIFFERENTIATION; STEM-CELLS; HYBRID SCAFFOLDS; MINERAL DENSITY; REGENERATION; POLYPHOSPHATE; BIOMATERIALS;
D O I
10.3389/fbioe.2023.1168504
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] 3D-PRINTED PCL-BASED GYNAECOLOGICAL MESHES: A NEW STRATEGY TO ENHANCE TISSUE-MESH INTEGRATION
    Corduas, Francesca
    Mathew, Essyrose
    McGlynn, Ruairi
    Byrne, Niall
    Mariotti, Davide
    Lamprou, Dimitrios
    Mancuso, Elena
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1279 - 1280
  • [32] Bioactive Magnetic Materials in Bone Tissue Engineering: A Review of Recent Findings in CaP-Based Particles and 3D-Printed Scaffolds
    Carvalho, Tania S. S.
    Torres, Paula M. C.
    Belo, Joao H.
    Mano, Joao
    Olhero, Susana M.
    ADVANCED NANOBIOMED RESEARCH, 2023, 3 (09):
  • [33] Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis
    Liu, Xiao
    Zhao, Naru
    Liang, Haifeng
    Tan, Bizhi
    Huang, Fangli
    Hu, Hao
    Chen, Yan
    Wang, Gang
    Ling, Zemin
    Liu, Chun
    Miao, Yali
    Wang, Yingjun
    Zou, Xuenong
    JOURNAL OF ORTHOPAEDIC TRANSLATION, 2022, 37 : 152 - 162
  • [34] PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications
    Nadeem Siddiqui
    Simran Asawa
    Bhaskar Birru
    Ramaraju Baadhe
    Sreenivasa Rao
    Molecular Biotechnology, 2018, 60 : 506 - 532
  • [35] Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering
    Babilotte, Joanna
    Martin, Benoit
    Guduric, Vera
    Bareille, Reine
    Agniel, Remy
    Roques, Samantha
    Heroguez, Valerie
    Dussauze, Marc
    Gaudon, Manuel
    Le Nihouannen, Damien
    Catros, Sylvain
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 118
  • [36] PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications
    Siddiqui, Nadeem
    Asawa, Simran
    Birru, Bhaskar
    Baadhe, Ramaraju
    Rao, Sreenivasa
    MOLECULAR BIOTECHNOLOGY, 2018, 60 (07) : 506 - 532
  • [37] Recent advances in bone tissue engineering scaffolds
    Bose, Susmita
    Roy, Mangal
    Bandyopadhyay, Amit
    TRENDS IN BIOTECHNOLOGY, 2012, 30 (10) : 546 - 554
  • [38] 3D Printed Composite Scaffolds in Bone Tissue Engineering: A Systematic Review
    Mohaghegh, Sadra
    Hosseini, Seyedeh Fatemeh
    Rad, Maryam Rezai
    Khojasteh, Arash
    CURRENT STEM CELL RESEARCH & THERAPY, 2022, 17 (07) : 648 - 709
  • [39] Biological study of polyethyleneimine functionalized polycaprolactone 3D-printed scaffolds for bone tissue engineering
    Khoshnood, Negin
    Shahrezayee, Mohammad Hossein
    Shahrezayee, Mostafa
    Shams, Alireza
    Zamanian, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (29)
  • [40] 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering
    Carrow, James K.
    Di Luca, Andrea
    Dolatshahi-Pirouz, Alireza
    Moroni, Lorenzo
    Gaharwar, Akhilesh K.
    REGENERATIVE BIOMATERIALS, 2019, 6 (01) : 29 - 37