Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering

被引:33
|
作者
Gharibshahian, Maliheh [1 ]
Salehi, Majid [2 ,3 ]
Beheshtizadeh, Nima [4 ,5 ]
Kamalabadi-Farahani, Mohammad [2 ]
Atashi, Amir [6 ]
Nourbakhsh, Mohammad-Sadegh [7 ]
Alizadeh, Morteza [2 ]
机构
[1] Shahroud Univ Med Sci, Student Res Comm, Sch Med, Shahroud, Iran
[2] Shahroud Univ Med Sci, Sch Med, Dept Tissue Engn, Shahroud, Iran
[3] Shahroud Univ Med Sci, Tissue Engn & Stem Cells Res Ctr, Shahroud, Iran
[4] Universal Sci Educ & Res Network USERN, Regenerat Med Grp REMED, Tehran, Iran
[5] Univ Tehran Med Sci, Sch Adv Technol Med, Dept Tissue Engn, Tehran, Iran
[6] Shahroud Univ Med Sci, Fac Allied Med Sci, Stem Cell & Tissue Engn Res Ctr, Shahroud, Iran
[7] Semnan Univ, Fac New Sci & Technol, Semnan, Iran
关键词
bone tissue engineering; PCL composites; 3D printing; bone scaffolds; 3D printed PCL; POLYCAPROLACTONE-HYDROXYAPATITE SCAFFOLDS; TRICALCIUM PHOSPHATE SCAFFOLD; MECHANICAL-PROPERTIES; OSTEOGENIC DIFFERENTIATION; STEM-CELLS; HYBRID SCAFFOLDS; MINERAL DENSITY; REGENERATION; POLYPHOSPHATE; BIOMATERIALS;
D O I
10.3389/fbioe.2023.1168504
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review
    Pawan Kumar
    Mohammad Shamim
    Tarmeen Muztaba
    Jyoti Ali
    Haramritpal Singh Bala
    Amit Sidhu
    Annals of Biomedical Engineering, 2024, 52 : 1184 - 1194
  • [42] Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review
    Kumar, Pawan
    Shamim
    Muztaba, Mohammad
    Ali, Tarmeen
    Bala, Jyoti
    Sidhu, Haramritpal Singh
    Bhatia, Amit
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (05) : 1184 - 1194
  • [43] Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications
    Xu, Zhanyan
    Omar, Abdalla M.
    Bartolo, Paulo
    MATERIALS, 2021, 14 (13)
  • [44] Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds
    Hayashi, Koichiro
    Kato, Nao
    Kato, Masaki
    Ishikawa, Kunio
    MATERIALS & DESIGN, 2021, 204
  • [45] Bioinstructive 3D-Printed Magnesium-Baghdadite Bioceramic Scaffolds for Bone Tissue Engineering
    Zhang, Anyu
    Lu, Zufu
    Roohani, Iman
    Liu, Bingyan
    Jarvis, Karyn L.
    Tan, Richard
    Wise, Steven G.
    Bilek, Marcela M. M.
    Mirkhalaf, Mohammad
    Akhavan, Behnam
    Zreiqat, Hala
    ACS Applied Materials and Interfaces, 2025, 17 (10): : 15220 - 15236
  • [46] 3D-printed cryomilled poly(ε-caprolactone)/graphene composite scaffolds for bone tissue regeneration
    Dias, Daniela
    Vale, Ana C.
    Cunha, Eunice P. F.
    C. Paiva, Maria
    Reis, Rui L.
    Vaquette, Cedryck
    Alves, Natalia M.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2021, 109 (07) : 961 - 972
  • [47] 3D-printed fish gelatin scaffolds for cartilage tissue engineering
    Maihemuti, Abudureheman
    Zhang, Han
    Lin, Xiang
    Wang, Yangyufan
    Xu, Zhihong
    Zhang, Dagan
    Jiang, Qing
    BIOACTIVE MATERIALS, 2023, 26 : 77 - 87
  • [48] HYBRID 3D-PRINTED HYDROGEL SCAFFOLDS FOR LIVER TISSUE ENGINEERING
    Carpentier, Nathan
    Van der Meeren, Louis
    Skirtach, Andre
    Devisscher, Lindsey
    Van Vlierberghe, Hans
    Dubruel, Peter
    Van Vlierberghe, Sandra
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 852 - 853
  • [49] 3D-printed biodegradable gyroid scaffolds for tissue engineering applications
    Germain, Loic
    Fuentes, Carlos A.
    van Vuure, Aart W.
    des Rieux, Anne
    Dupont-Gillain, Christine
    MATERIALS & DESIGN, 2018, 151 : 113 - 122
  • [50] 3D-printed scaffolds with calcified layer for osteochondral tissue engineering
    Li, Zhengyu
    Jia, Shuaijun
    Xiong, Zhuo
    Long, Qianfa
    Yan, Shaorong
    Hao, Fu
    Liu, Jian
    Yuan, Zhi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2018, 126 (03) : 389 - 396