Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems

被引:38
|
作者
Abdel-Basset, Mohamed [1 ]
Mohamed, Reda [1 ]
Zidan, Mahinda [1 ]
Jameel, Mohammed [2 ,3 ]
Abouhawwash, Mohamed [2 ,4 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig 44519, Egypt
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Sanaa Univ, Dept Math, Sanaa, Yemen
[4] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
关键词
Swarm algorithms; Global optimization; Mantis search algorithm; Constrained optimization; Unconstrained optimization; PRAYING-MANTIS; TENODERA-ARIDIFOLIA; SEXUAL CANNIBALISM; MARINE PREDATORS; EVOLUTION; MANTODEA; DISTANCE; BEHAVIOR; INSECTA; IDENTIFICATION;
D O I
10.1016/j.cma.2023.116200
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a new nature-inspired optimization algorithm, namely the Mantis Search Algorithm (MSA), inspired by the unique hunting behavior and sexual cannibalism of praying mantises. In brief, MSA consists of three optimization stages, including the search for prey (exploration), attack prey (exploitation), and sexual cannibalism. Those operators are simulated using various mathematical models to effectively tackle optimization challenges across diverse search spaces. The performance of MSA is rigorously tested on fifty-two optimization problems and three real-world applications (five engineering design problems, and the parameter estimation problem of photovoltaic modules and fuel cells) to show its versatility and adaptability to different scenarios. To disclose the MSA's superiority, it is compared to two categories from the rival optimizers: the first category involves well-established and highly-cited optimizers, like Differential evolution; and the second category contains recently-published algorithms, like African Vultures Optimization Algorithm. This comparison is conducted using several performance metrics, the Wilcoxon rank-sum test and the Friedman mean rank to disclose the MSA's effectiveness and efficiency. The results of this comparison highlight the effectiveness of this new approach and its potential for future optimization applications. The source codes of the MSA algorithm are publicly available at https://www.mathworks.com/matl abcentral/fileexchange/131833-mantis-search-algorithm-msa.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] Hunger games search algorithm for global optimization of engineering design problems
    Mehta, Pranav
    Yildiz, Betul Sultan
    Sait, Sadiq M.
    Yildiz, Ali Riza
    MATERIALS TESTING, 2022, 64 (04) : 524 - 532
  • [32] Zebra Optimization Algorithm: A New Bio-Inspired Optimization Algorithm for Solving Optimization Algorithm
    Trojovska, Eva
    Dehghani, Mohammad
    Trojovsky, Pavel
    IEEE ACCESS, 2022, 10 : 49445 - 49473
  • [33] Serval Optimization Algorithm: A New Bio-Inspired Approach for Solving Optimization Problems
    Dehghani, Mohammad
    Trojovsky, Pavel
    BIOMIMETICS, 2022, 7 (04)
  • [34] Design and analysis of a bio-inspired search algorithm for peer to peer networks
    Ganguly, N
    Brusch, L
    Deutsch, A
    SELF-STAR PROPERTIES IN COMPLEX INFORMATION SYSTEMS: CONCEPTUAL AND PRACTICAL FOUNDATIONS, 2005, 3460 : 358 - 372
  • [35] Barnacles Mating Optimizer: A Bio-Inspired Algorithm for Solving Optimization Problems
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Saari, Mohd Mawardi
    Daniyal, Hamdan
    Daud, Mohd Razali
    Razali, Saifudin
    Mohamed, Amir Izzani
    2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2018, : 265 - 270
  • [36] Starfish optimization algorithm (SFOA): a bio-inspired metaheuristic algorithm for global optimization compared with 100 optimizers
    Changting Zhong
    Gang Li
    Zeng Meng
    Haijiang Li
    Ali Riza Yildiz
    Seyedali Mirjalili
    Neural Computing and Applications, 2025, 37 (5) : 3641 - 3683
  • [37] Bobcat Optimization Algorithm: an effective bio-inspired metaheuristic algorithm for solving supply chain optimization problems
    Benmamoun, Zoubida
    Khlie, Khaoula
    Bektemyssova, Gulnara
    Dehghani, Mohammad
    Gherabi, Youness
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [38] From biological morphogenesis to engineering joint design: A bio-inspired algorithm
    Marquez-Florez, Kalenia
    Arroyave-Tobon, Santiago
    Linares, Jean-Marc
    MATERIALS & DESIGN, 2023, 225
  • [39] Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems
    Abdel-Basset, Mohamed
    Mohamed, Reda
    Jameel, Mohammed
    Abouhawwash, Mohamed
    KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [40] Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems
    Wang, Liying
    Cao, Qingjiao
    Zhang, Zhenxing
    Mirjalili, Seyedali
    Zhao, Weiguo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114