Mantis Search Algorithm: A novel bio-inspired algorithm for global optimization and engineering design problems

被引:38
|
作者
Abdel-Basset, Mohamed [1 ]
Mohamed, Reda [1 ]
Zidan, Mahinda [1 ]
Jameel, Mohammed [2 ,3 ]
Abouhawwash, Mohamed [2 ,4 ]
机构
[1] Zagazig Univ, Fac Comp & Informat, Zagazig 44519, Egypt
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[3] Sanaa Univ, Dept Math, Sanaa, Yemen
[4] Michigan State Univ, Dept Computat Math Sci & Engn CMSE, E Lansing, MI 48824 USA
关键词
Swarm algorithms; Global optimization; Mantis search algorithm; Constrained optimization; Unconstrained optimization; PRAYING-MANTIS; TENODERA-ARIDIFOLIA; SEXUAL CANNIBALISM; MARINE PREDATORS; EVOLUTION; MANTODEA; DISTANCE; BEHAVIOR; INSECTA; IDENTIFICATION;
D O I
10.1016/j.cma.2023.116200
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study presents a new nature-inspired optimization algorithm, namely the Mantis Search Algorithm (MSA), inspired by the unique hunting behavior and sexual cannibalism of praying mantises. In brief, MSA consists of three optimization stages, including the search for prey (exploration), attack prey (exploitation), and sexual cannibalism. Those operators are simulated using various mathematical models to effectively tackle optimization challenges across diverse search spaces. The performance of MSA is rigorously tested on fifty-two optimization problems and three real-world applications (five engineering design problems, and the parameter estimation problem of photovoltaic modules and fuel cells) to show its versatility and adaptability to different scenarios. To disclose the MSA's superiority, it is compared to two categories from the rival optimizers: the first category involves well-established and highly-cited optimizers, like Differential evolution; and the second category contains recently-published algorithms, like African Vultures Optimization Algorithm. This comparison is conducted using several performance metrics, the Wilcoxon rank-sum test and the Friedman mean rank to disclose the MSA's effectiveness and efficiency. The results of this comparison highlight the effectiveness of this new approach and its potential for future optimization applications. The source codes of the MSA algorithm are publicly available at https://www.mathworks.com/matl abcentral/fileexchange/131833-mantis-search-algorithm-msa.
引用
收藏
页数:43
相关论文
共 50 条
  • [21] Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
    Wang, Gai-Ge
    Deb, Suash
    Coelho, Leandro dos Santos
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2018, 12 (01) : 1 - 22
  • [22] Recent advances in use of bio-inspired jellyfish search algorithm for solving optimization problems
    Jui-Sheng Chou
    Asmare Molla
    Scientific Reports, 12
  • [23] Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm for global optimisation problems
    Wang G.-G.
    Deb S.
    Dos Santos Coelho L.
    Wang, Gai-Ge (gaigewang@163.com), 2018, Inderscience Enterprises Ltd. (12) : 1 - 22
  • [24] Emperor penguin optimizer: A bio-inspired algorithm for engineering problems
    Dhiman, Gaurav
    Kumar, Vijay
    KNOWLEDGE-BASED SYSTEMS, 2018, 159 : 20 - 50
  • [25] Siberian Tiger Optimization: A New Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems
    Trojovsky, Pavel
    Dehghani, Mohammad
    Hanus, Pavel
    IEEE ACCESS, 2022, 10 : 132396 - 132431
  • [26] Snail Homing and Mating Search algorithm: a novel bio-inspired metaheuristic algorithm
    Kulkarni, Anand J.
    Kale, Ishaan R.
    Shastri, Apoorva
    Khandekar, Aayush
    Soft Computing, 2024, 28 (17-18) : 10629 - 10668
  • [27] Barnacles Mating Optimizer: A new bio-inspired algorithm for solving engineering optimization problems
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Saari, Mohd Mawardi
    Daniyal, Hamdan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 87
  • [28] Novel Physicomimetic Bio-inspired Algorithm for Search and Rescue Applications
    Rajan, Rahul
    Otte, Michael
    Sofge, Donald
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 1869 - 1876
  • [29] Artificial Protozoa Optimizer (APO): A novel bio-inspired metaheuristic algorithm for engineering optimization
    Wang, Xiaopeng
    Snasel, Vaclav
    Mirjalili, Seyedali
    Pan, Jeng-Shyang
    Kong, Lingping
    Shehadeh, Hisham A.
    KNOWLEDGE-BASED SYSTEMS, 2024, 295
  • [30] A Novel Bio-Inspired Optimization Algorithm Design for Wind Power Engineering Applications Time-Series Forecasting
    Karim, Faten Khalid
    Khafaga, Doaa Sami
    Eid, Marwa M.
    Towfek, S. K.
    Alkahtani, Hend K.
    BIOMIMETICS, 2023, 8 (03)