Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer

被引:9
|
作者
Holzschuh, Julius C. [1 ,2 ,3 ,24 ]
Mix, Michael [4 ]
Ruf, Juri [4 ]
Hoelscher, Tobias [6 ,7 ]
Kotzerke, Joerg [8 ,9 ]
Vrachimis, Alexis [10 ]
Doolan, Paul [22 ]
Ilhan, Harun [11 ]
Marinescu, Ioana M. [1 ,2 ]
Spohn, Simon K. B. [1 ,2 ,12 ]
Fechter, Tobias [1 ,2 ,5 ]
Kuhn, Dejan [1 ,2 ,5 ]
Bronsert, Peter [13 ]
Gratzke, Christian [14 ]
Grosu, Radu [15 ,16 ,23 ]
Kamran, Sophia C. [17 ]
Heidari, Pedram [18 ]
Ng, Thomas S. C. [18 ,19 ,20 ]
Koenik, Arda [19 ,20 ]
Grosu, Anca-Ligia
Zamboglou, Constantinos [21 ]
机构
[1] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Freiburg, Germany
[2] German Canc Consortium DKTK, Partner Site Freiburg, Freiburg, Germany
[3] Karlsruhe Inst Technol, Fac Comp Sci, Karlsruhe, Germany
[4] Univ Freiburg, Med Ctr, Dept Nucl Med, Freiburg, Germany
[5] Univ Freiburg, Fac Med, Med Ctr, Dept Radiat Oncol,Div Med Phys, Freiburg, Germany
[6] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[7] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[8] Fac Med, Dept Nucl Med, Dresden, Germany
[9] Univ Hosp Carl Gustav Carus, Dresden, Germany
[10] Univ Hosp European Univ, German Oncol Ctr, Dept Nucl Med, Limassol, Cyprus
[11] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[12] Univ Freiburg, Fac Med, Berta Ottenstein Programme, Freiburg, Germany
[13] Univ Freiburg, Med Ctr, Dept Pathol, Freiburg, Germany
[14] Univ Freiburg, Med Ctr, Dept Urol, Freiburg, Germany
[15] Vienna Univ Technol, Inst Comp Engn, Cyber Phys Syst Div, Vienna, Austria
[16] Vienna Univ Technol, Fac Informat, Vienna, Austria
[17] Harvard Med Sch, Dept Radiat Oncol, Massachusetts Gen Hosp, Boston, MA USA
[18] Harvard Med Sch, Massachusetts Gen Hosp, Div Nucl Med & Mol Imaging, Dept Radiol, Boston, MA USA
[19] Harvard Med Sch, Brigham & Womens Hosp, Joint Program Nucl Med, Boston, MA USA
[20] Harvard Med Sch, Dana Farber Canc Inst, Dept Imaging, Boston, MA USA
[21] European Univ Cyprus, German Oncol Ctr, Limassol, Cyprus
[22] Univ Hosp European Univ, German Oncol Ctr, Dept Radiat Oncol, Limassol, Cyprus
[23] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY USA
[24] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Robert Koch Str 3, D-79106 Freiburg, Germany
关键词
PSMA-PET; Prostate; CNN; Machine Learning; Segmentation; RADIATION-THERAPY; F-18-PSMA-1007; IMAGES; MRI;
D O I
10.1016/j.radonc.2023.109774
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: With the increased use of focal radiation dose escalation for primary prostate cancer (PCa), accurate delineation of gross tumor volume (GTV) in prostate-specific membrane antigen PET (PSMA-PET) becomes crucial. Manual approaches are time-consuming and observer dependent. The purpose of this study was to create a deep learning model for the accurate delineation of the intraprostatic GTV in PSMA-PET. Methods: A 3D U-Net was trained on 128 different 18F-PSMA-1007 PET images from three different institutions. Testing was done on 52 patients including one independent internal cohort (Freiburg: n = 19) and three independent external cohorts (Dresden: n = 14 18F-PSMA-1007, Boston: Massachusetts General Hospital (MGH): n = 9 18F-DCFPyL-PSMA and Dana-Farber Cancer Institute (DFCI): n = 10 68Ga-PSMA-11). Expert contours were generated in consensus using a validated technique. CNN predictions were compared to expert contours using Dice similarity coefficient (DSC). Co-registered whole-mount histology was used for the internal testing cohort to assess sensitivity/specificity. Results: Median DSCs were Freiburg: 0.82 (IQR: 0.73-0.88), Dresden: 0.71 (IQR: 0.53-0.75), MGH: 0.80 (IQR: 0.64-0.83) and DFCI: 0.80 (IQR: 0.67-0.84), respectively. Median sensitivity for CNN and expert contours were 0.88 (IQR: 0.68-0.97) and 0.85 (IQR: 0.75-0.88) (p = 0.40), respectively. GTV volumes did not differ significantly (p > 0.1 for all comparisons). Median specificity of 0.83 (IQR: 0.57-0.97) and 0.88 (IQR: 0.69-0.98) were observed for CNN and expert contours (p = 0.014), respectively. CNN prediction took 3.81 seconds on average per patient. Conclusion: The CNN was trained and tested on internal and external datasets as well as histopathology reference, achieving a fast GTV segmentation for three PSMA-PET tracers with high diagnostic accuracy comparable to manual experts.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients
    Yngve Mardal Moe
    Aurora Rosvoll Groendahl
    Oliver Tomic
    Einar Dale
    Eirik Malinen
    Cecilia Marie Futsaether
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 2782 - 2792
  • [42] Deep learning-based auto-delineation of gross tumour volumes and involved nodes in PET/CT images of head and neck cancer patients
    Moe, Yngve Mardal
    Groendahl, Aurora Rosvoll
    Tomic, Oliver
    Dale, Einar
    Malinen, Eirik
    Futsaether, Cecilia Marie
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (09) : 2782 - 2792
  • [43] PSMA-PET and PROMISE re-define stage and risk in prostate cancer patients
    Karpinski, M.
    Huesing, J.
    Claassen, K.
    Moeller, L.
    Kajueter, H.
    Oesterling, F.
    Gruenwald, V.
    Umutlu, L.
    Lanzafame, H.
    Telli, T.
    Merkel-Jens, A.
    Huesing, A.
    Kesch, C.
    Herrmann, K.
    Stang, A.
    Hadaschik, B.
    Fendler, W. P.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S194 - S195
  • [44] Intraprostatic GTV delineation in 18F-PSMA-PET Images for Patients with Primary PCa using a CNN
    Holzschuh, J.
    Mix, M.
    Ruf, J.
    Holscher, T.
    Kotzerke, J.
    Vrachimis, A.
    Ilhan, H.
    Spohn, S. K.
    Fechter, T.
    Kostyszyn, D.
    Bronsert, P.
    Gratzke, C.
    Grosu, R.
    Kamran, S. C.
    Heidari, P.
    Ng, T. S.
    Konik, A.
    Grosu, A.
    Zamboglou, C.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S154 - S155
  • [45] Defining Oligometastatic Disease in the New Era of PSMA-PET Imaging for Primary Staging of Prostate Cancer
    Galgano, Samuel J.
    McDonald, Andrew M.
    West, Janelle T.
    Rais-Bahrami, Soroush
    CANCERS, 2022, 14 (14)
  • [46] PSMA-PET and PROMISE re-define stage and risk in patients with prostate cancer
    Fendler, W. P.
    Karpinski, M.
    Huesing, J.
    Claassen, K.
    Kajueter, H.
    Oesterling, F.
    Gruenwald, V.
    Umutlu, L.
    Telli, T.
    Merkel-Jens, A.
    Huesing, A.
    Kesch, C.
    Hoberueck, S.
    Meyer, P.
    Kind, F.
    Rahbar, K.
    Schaefers, M.
    Stang, A.
    Herrmann, K.
    Hadaschik, B. A.
    ANNALS OF ONCOLOGY, 2024, 35 : S971 - S971
  • [47] Deep Learning -Based Synthesis of Contrast-Enhanced MRI for Automated Delineation of Primary Gross Tumor Volume in Radiotherapy of Nasopharyngeal Carcinoma
    Lin, L.
    Peng, P.
    Zhou, G. Q.
    Huang, S. M.
    Hu, J.
    Liu, Y.
    He, S. M.
    Sun, Y.
    Zhang, W.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E475 - E475
  • [48] PSMA-PET/CT-based IMRT dose painting in Patients with primary Prostate Cancer: A Planning Study with histopathological Information as a Reference
    Koubar, K.
    Zamboglou, C.
    Sachpazidis, I
    Wiehle, R.
    Kirste, S.
    Drendel, V
    Mix, M.
    Schiller, F.
    Mavroidis, P.
    Meyer, P. T.
    Grosu, A-L
    Baltas, D.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2017, 193 : S66 - S66
  • [49] Comparison of PSMA-PET/CT and Multiparametric MRI for Dose Painting Guidance in Patients With Primary Prostate Cancer Based on Comparison with Histology Reference
    Zamboglou, C.
    Sachpazidis, I.
    Koubar, K.
    Drendel, V.
    Mavroidis, P.
    Jilg, C. A.
    Krauss, T.
    Rischke, H. C.
    Werner, M.
    Langer, M.
    Meyer, P. T.
    Baltas, D.
    Grosu, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : E279 - E280
  • [50] Fully automated AI-based quantification of tumour volume on PSMA PET- CT images is significantly associated with overall survival in patients with prostate cancer
    Tragardh, E.
    Ingvar, J.
    Enqvist, O.
    Ulen, J.
    Minarik, D.
    Edenbrandt, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S541 - S542