Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer

被引:9
|
作者
Holzschuh, Julius C. [1 ,2 ,3 ,24 ]
Mix, Michael [4 ]
Ruf, Juri [4 ]
Hoelscher, Tobias [6 ,7 ]
Kotzerke, Joerg [8 ,9 ]
Vrachimis, Alexis [10 ]
Doolan, Paul [22 ]
Ilhan, Harun [11 ]
Marinescu, Ioana M. [1 ,2 ]
Spohn, Simon K. B. [1 ,2 ,12 ]
Fechter, Tobias [1 ,2 ,5 ]
Kuhn, Dejan [1 ,2 ,5 ]
Bronsert, Peter [13 ]
Gratzke, Christian [14 ]
Grosu, Radu [15 ,16 ,23 ]
Kamran, Sophia C. [17 ]
Heidari, Pedram [18 ]
Ng, Thomas S. C. [18 ,19 ,20 ]
Koenik, Arda [19 ,20 ]
Grosu, Anca-Ligia
Zamboglou, Constantinos [21 ]
机构
[1] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Freiburg, Germany
[2] German Canc Consortium DKTK, Partner Site Freiburg, Freiburg, Germany
[3] Karlsruhe Inst Technol, Fac Comp Sci, Karlsruhe, Germany
[4] Univ Freiburg, Med Ctr, Dept Nucl Med, Freiburg, Germany
[5] Univ Freiburg, Fac Med, Med Ctr, Dept Radiat Oncol,Div Med Phys, Freiburg, Germany
[6] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[7] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[8] Fac Med, Dept Nucl Med, Dresden, Germany
[9] Univ Hosp Carl Gustav Carus, Dresden, Germany
[10] Univ Hosp European Univ, German Oncol Ctr, Dept Nucl Med, Limassol, Cyprus
[11] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[12] Univ Freiburg, Fac Med, Berta Ottenstein Programme, Freiburg, Germany
[13] Univ Freiburg, Med Ctr, Dept Pathol, Freiburg, Germany
[14] Univ Freiburg, Med Ctr, Dept Urol, Freiburg, Germany
[15] Vienna Univ Technol, Inst Comp Engn, Cyber Phys Syst Div, Vienna, Austria
[16] Vienna Univ Technol, Fac Informat, Vienna, Austria
[17] Harvard Med Sch, Dept Radiat Oncol, Massachusetts Gen Hosp, Boston, MA USA
[18] Harvard Med Sch, Massachusetts Gen Hosp, Div Nucl Med & Mol Imaging, Dept Radiol, Boston, MA USA
[19] Harvard Med Sch, Brigham & Womens Hosp, Joint Program Nucl Med, Boston, MA USA
[20] Harvard Med Sch, Dana Farber Canc Inst, Dept Imaging, Boston, MA USA
[21] European Univ Cyprus, German Oncol Ctr, Limassol, Cyprus
[22] Univ Hosp European Univ, German Oncol Ctr, Dept Radiat Oncol, Limassol, Cyprus
[23] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY USA
[24] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Robert Koch Str 3, D-79106 Freiburg, Germany
关键词
PSMA-PET; Prostate; CNN; Machine Learning; Segmentation; RADIATION-THERAPY; F-18-PSMA-1007; IMAGES; MRI;
D O I
10.1016/j.radonc.2023.109774
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: With the increased use of focal radiation dose escalation for primary prostate cancer (PCa), accurate delineation of gross tumor volume (GTV) in prostate-specific membrane antigen PET (PSMA-PET) becomes crucial. Manual approaches are time-consuming and observer dependent. The purpose of this study was to create a deep learning model for the accurate delineation of the intraprostatic GTV in PSMA-PET. Methods: A 3D U-Net was trained on 128 different 18F-PSMA-1007 PET images from three different institutions. Testing was done on 52 patients including one independent internal cohort (Freiburg: n = 19) and three independent external cohorts (Dresden: n = 14 18F-PSMA-1007, Boston: Massachusetts General Hospital (MGH): n = 9 18F-DCFPyL-PSMA and Dana-Farber Cancer Institute (DFCI): n = 10 68Ga-PSMA-11). Expert contours were generated in consensus using a validated technique. CNN predictions were compared to expert contours using Dice similarity coefficient (DSC). Co-registered whole-mount histology was used for the internal testing cohort to assess sensitivity/specificity. Results: Median DSCs were Freiburg: 0.82 (IQR: 0.73-0.88), Dresden: 0.71 (IQR: 0.53-0.75), MGH: 0.80 (IQR: 0.64-0.83) and DFCI: 0.80 (IQR: 0.67-0.84), respectively. Median sensitivity for CNN and expert contours were 0.88 (IQR: 0.68-0.97) and 0.85 (IQR: 0.75-0.88) (p = 0.40), respectively. GTV volumes did not differ significantly (p > 0.1 for all comparisons). Median specificity of 0.83 (IQR: 0.57-0.97) and 0.88 (IQR: 0.69-0.98) were observed for CNN and expert contours (p = 0.014), respectively. CNN prediction took 3.81 seconds on average per patient. Conclusion: The CNN was trained and tested on internal and external datasets as well as histopathology reference, achieving a fast GTV segmentation for three PSMA-PET tracers with high diagnostic accuracy comparable to manual experts.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] PSMA-PET GUIDED METASTASES DIRECTED TREATMENT IN PATIENTS WITH OLIGORECURRENT PROSTATE CANCER
    Bianchi, Lorenzo
    Balestrazzi, Eleonora
    Robesti, Daniele
    Gandaglia, Giorgio
    Ceci, Francesco
    Rajwa, Pawel
    van den Bergh, Roderick C. N.
    Mignogna, Chiara
    Droghetti, Matteo
    Piazza, Pietro
    Pissavini, Alessandro
    Farolfi, Andrea
    Mottrie, Alexandre
    Briganti, Alberto
    Morganti, Alessio Giuseppe
    Fanti, Stefano
    Montorsi, Francesco
    Schiavina, Riccardo
    Brunocilla, Eugenio
    JOURNAL OF UROLOGY, 2024, 211 (05): : E68 - E68
  • [32] Intraindividual comparison between 68Ga-PSMA-PET/CT and mpMRI for intraprostatic tumor delineation in patients with primary prostate cancer: a retrospective analysis in 101 patients
    Simon Spohn
    Chiara Jaegle
    Thomas F. Fassbender
    Tanja Sprave
    Eleni Gkika
    Nils H. Nicolay
    Michael Bock
    Juri Ruf
    Matthias Benndorf
    Christian Gratzke
    Anca L. Grosu
    Constantinos Zamboglou
    European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47 : 2796 - 2803
  • [33] The Volume and Dose Distribution in the intraprostatic Tumor Volume defined after PSMA PET/CT and MRI correlate with the Outcome after primary Radiotherapy in Patients with Prostate Cancer
    Zamboglou, C.
    Klein, C. M.
    Thomann, B.
    Rischke, H. C.
    Kirste, S.
    Henne, K.
    Neher, Volegova N.
    Bock, M.
    Meyer, P. T.
    Baltas, D.
    Grosu, A. L.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2018, 194 : S36 - S36
  • [34] Patterns of failure in a primary staging setting for prostate cancer evaluated with PSMA-PET imaging
    Schiller, K.
    Devecka, M.
    Maurer, T.
    Eiber, M.
    Combs, S. E.
    Habl, G.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S433 - S434
  • [35] F18-DCFPyL PSMA-PET/CT vs. mpMRI for Localizing the Gross Target Volume for Radiotherapy in Prostate Cancer
    Belliveau, C.
    Benhacene-Boudam, M. K.
    Juneau, D.
    Olivie, D.
    Barkati, M.
    Delouya, G.
    Taussky, D.
    Lambert, C.
    Beauchemin, M. C.
    Menard, C.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E368 - E368
  • [36] 68Ga-PSMA-11-PET, 18F-PSMA-1007-PET and MRI for Gross Tumor Volume Delineation in Primary Prostate Cancer: Intermodality and Inter-tracer Variability
    Draulans, C.
    Pos, F. J.
    Smeenk, R. J.
    Kerkmeijer, L.
    Vogel, W.
    Nagarajah, J.
    Janssen, M.
    Mai, C.
    Heijmink, S.
    van der Leest, M.
    Zamecnik, P.
    Isebaert, S.
    Maes, F.
    Joniau, S.
    Kunze-Busch, M.
    De Roover, R.
    Defraene, G.
    van der Heide, U.
    Goffin, K.
    Haustermans, K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E878 - E878
  • [37] Intraindividual comparison between 68Ga-PSMA-PET/CT and mpMRI for intraprostatic tumor delineation in patients with primary prostate cancer: a retrospective analysis in 101 patients
    Spohn, Simon
    Jaegle, Chiara
    Fassbender, Thomas F.
    Sprave, Tanja
    Gkika, Eleni
    Nicolay, Nils H.
    Bock, Michael
    Ruf, Juri
    Benndorf, Matthias
    Gratzke, Christian
    Grosu, Anca L.
    Zamboglou, Constantinos
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (12) : 2796 - 2803
  • [38] Automatic delineation of the gross-tumour volume in prostate cancer using shape models
    Cheng, K.
    Feng, Y.
    Montgomery, D.
    McLaren, D. B.
    McLaughlin, S.
    Nailon, W.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S940 - S940
  • [39] Validation of gallium-68 PSMA-PET/CT for primary lymph node staging in prostate cancer patients
    van Kalmthout, L.
    van Melick, H.
    Lavalaye, J.
    Meijer, R.
    Kooistra, A.
    de Klerk, J.
    Braat, A.
    Kaldeway, P.
    de Keizer, B.
    Lam, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S295 - S295
  • [40] Automation of population-based recurrence map for PSMA-PET prostate cancer patients after prostatectomy
    Rigaud, Bastien
    Beliveau, Pascale
    Cazoulat, Guillaume
    Juneau, Daniel
    Menard, Cynthia
    Brock, Kristy K.
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596