Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer

被引:9
|
作者
Holzschuh, Julius C. [1 ,2 ,3 ,24 ]
Mix, Michael [4 ]
Ruf, Juri [4 ]
Hoelscher, Tobias [6 ,7 ]
Kotzerke, Joerg [8 ,9 ]
Vrachimis, Alexis [10 ]
Doolan, Paul [22 ]
Ilhan, Harun [11 ]
Marinescu, Ioana M. [1 ,2 ]
Spohn, Simon K. B. [1 ,2 ,12 ]
Fechter, Tobias [1 ,2 ,5 ]
Kuhn, Dejan [1 ,2 ,5 ]
Bronsert, Peter [13 ]
Gratzke, Christian [14 ]
Grosu, Radu [15 ,16 ,23 ]
Kamran, Sophia C. [17 ]
Heidari, Pedram [18 ]
Ng, Thomas S. C. [18 ,19 ,20 ]
Koenik, Arda [19 ,20 ]
Grosu, Anca-Ligia
Zamboglou, Constantinos [21 ]
机构
[1] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Freiburg, Germany
[2] German Canc Consortium DKTK, Partner Site Freiburg, Freiburg, Germany
[3] Karlsruhe Inst Technol, Fac Comp Sci, Karlsruhe, Germany
[4] Univ Freiburg, Med Ctr, Dept Nucl Med, Freiburg, Germany
[5] Univ Freiburg, Fac Med, Med Ctr, Dept Radiat Oncol,Div Med Phys, Freiburg, Germany
[6] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[7] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[8] Fac Med, Dept Nucl Med, Dresden, Germany
[9] Univ Hosp Carl Gustav Carus, Dresden, Germany
[10] Univ Hosp European Univ, German Oncol Ctr, Dept Nucl Med, Limassol, Cyprus
[11] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[12] Univ Freiburg, Fac Med, Berta Ottenstein Programme, Freiburg, Germany
[13] Univ Freiburg, Med Ctr, Dept Pathol, Freiburg, Germany
[14] Univ Freiburg, Med Ctr, Dept Urol, Freiburg, Germany
[15] Vienna Univ Technol, Inst Comp Engn, Cyber Phys Syst Div, Vienna, Austria
[16] Vienna Univ Technol, Fac Informat, Vienna, Austria
[17] Harvard Med Sch, Dept Radiat Oncol, Massachusetts Gen Hosp, Boston, MA USA
[18] Harvard Med Sch, Massachusetts Gen Hosp, Div Nucl Med & Mol Imaging, Dept Radiol, Boston, MA USA
[19] Harvard Med Sch, Brigham & Womens Hosp, Joint Program Nucl Med, Boston, MA USA
[20] Harvard Med Sch, Dana Farber Canc Inst, Dept Imaging, Boston, MA USA
[21] European Univ Cyprus, German Oncol Ctr, Limassol, Cyprus
[22] Univ Hosp European Univ, German Oncol Ctr, Dept Radiat Oncol, Limassol, Cyprus
[23] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY USA
[24] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Robert Koch Str 3, D-79106 Freiburg, Germany
关键词
PSMA-PET; Prostate; CNN; Machine Learning; Segmentation; RADIATION-THERAPY; F-18-PSMA-1007; IMAGES; MRI;
D O I
10.1016/j.radonc.2023.109774
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: With the increased use of focal radiation dose escalation for primary prostate cancer (PCa), accurate delineation of gross tumor volume (GTV) in prostate-specific membrane antigen PET (PSMA-PET) becomes crucial. Manual approaches are time-consuming and observer dependent. The purpose of this study was to create a deep learning model for the accurate delineation of the intraprostatic GTV in PSMA-PET. Methods: A 3D U-Net was trained on 128 different 18F-PSMA-1007 PET images from three different institutions. Testing was done on 52 patients including one independent internal cohort (Freiburg: n = 19) and three independent external cohorts (Dresden: n = 14 18F-PSMA-1007, Boston: Massachusetts General Hospital (MGH): n = 9 18F-DCFPyL-PSMA and Dana-Farber Cancer Institute (DFCI): n = 10 68Ga-PSMA-11). Expert contours were generated in consensus using a validated technique. CNN predictions were compared to expert contours using Dice similarity coefficient (DSC). Co-registered whole-mount histology was used for the internal testing cohort to assess sensitivity/specificity. Results: Median DSCs were Freiburg: 0.82 (IQR: 0.73-0.88), Dresden: 0.71 (IQR: 0.53-0.75), MGH: 0.80 (IQR: 0.64-0.83) and DFCI: 0.80 (IQR: 0.67-0.84), respectively. Median sensitivity for CNN and expert contours were 0.88 (IQR: 0.68-0.97) and 0.85 (IQR: 0.75-0.88) (p = 0.40), respectively. GTV volumes did not differ significantly (p > 0.1 for all comparisons). Median specificity of 0.83 (IQR: 0.57-0.97) and 0.88 (IQR: 0.69-0.98) were observed for CNN and expert contours (p = 0.014), respectively. CNN prediction took 3.81 seconds on average per patient. Conclusion: The CNN was trained and tested on internal and external datasets as well as histopathology reference, achieving a fast GTV segmentation for three PSMA-PET tracers with high diagnostic accuracy comparable to manual experts.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer
    Yi, Zhilong
    Hu, Siqi
    Lin, Xiaofeng
    Zou, Qiong
    Zou, MinHong
    Zhang, Zhanlei
    Xu, Lei
    Jiang, Ningyi
    Zhang, Yong
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (05) : 1523 - 1534
  • [22] Emotional state of patients with prostate cancer during PSMA-PET/CT
    Boeser, J.
    Faller, H.
    Lukasczik, M.
    Weisbrodt, J.
    Werner, R. A.
    Buck, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S692 - S692
  • [23] Machine learning-based prediction of invisible intraprostatic prostate cancer lesions on 68 Ga-PSMA-11 PET/CT in patients with primary prostate cancer
    Zhilong Yi
    Siqi Hu
    Xiaofeng Lin
    Qiong Zou
    MinHong Zou
    Zhanlei Zhang
    Lei Xu
    Ningyi Jiang
    Yong Zhang
    European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49 : 1523 - 1534
  • [24] Intraprostatic Tumor Segmentation on PSMA PET Images in Patients with Primary Prostate Cancer with a Convolutional Neural Network
    Kostyszyn, Dejan
    Fechter, Tobias
    Bartl, Nico
    Grosu, Anca L.
    Gratzke, Christian
    Sigle, August
    Mix, Michael
    Ruf, Juri
    Fassbender, Thomas F.
    Kiefer, Selina
    Bettermann, Alisa S.
    Nicolay, Nils H.
    Spohn, Simon
    Kramer, Maria U.
    Bronsert, Peter
    Guo, Hongqian
    Qiu, Xuefeng
    Wang, Feng
    Henkenberens, Christoph
    Werner, Rudolf A.
    Baltas, Dimos
    Meyer, Philipp T.
    Derlin, Thorsten
    Chen, Mengxia
    Zamboglou, Constantinos
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62 (06) : 823 - 828
  • [25] Ga-HBED-CC PSMA-PET / CT and multiparametric MRI for Target Volume Definition in Patients with primary Prostate Cancer
    Zamboglou, C.
    Drendel, V
    Rischke, H. C.
    Salman, N.
    Krauss, T.
    Schaal, K.
    Jilg, C. A.
    Langer, M.
    Meyer, P. T.
    Werner, M.
    Grosu, A. L.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2017, 193 : S18 - S19
  • [26] 68Ga-PSMA-11 PET, 18F-PSMA-1007 PET, and MRI for Gross Tumor Volume Delineation in Primary Prostate Cancer: Intermodality and Intertracer Variability
    Draulans, Cedric
    Pos, Floris
    Smeenk, Robert J.
    Kerkmeijer, Linda
    Vogel, Wouter V.
    Nagarajah, James
    Janssen, Marcel
    Mai, Cindy
    Heijmink, Stijn
    van der Leest, Marloes
    Zamecnik, Patrik
    Oyen, Raymond
    Isebaert, Sofie
    Maes, Frederik
    Joniau, Steven
    Kunze-Busch, Martina
    De Roover, Robin
    Defraene, Gilles
    van der Heide, Uulke A.
    Goffin, Karolien
    Haustermans, Karin
    PRACTICAL RADIATION ONCOLOGY, 2021, 11 (03) : 202 - 211
  • [27] Evaluation of PSMA-PET for diagnosis of Recurrence in Patients with Prostate Cancer after Prostatectomy and Integration of PSMA-PET Imaging in Radiotherapy Planning
    Sauter, K.
    Eiber, M.
    Maurer, T.
    Vogel, M. M. E.
    Heidger, A.
    Kessel, K. A.
    Schwaiger, M.
    Gschwend, J. E.
    Combs, S. E.
    Habl, G.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2015, 191 : S50 - S51
  • [28] Influence of PSMA-PET on treatment of prostate cancer patients with biochemical recurrence
    Knudtsen, I. S.
    Abrahamsen, B. S.
    Selnaes, K. M.
    Elschot, M.
    Langorgen, S.
    Keil, T. M.
    Johansen, H.
    Bertilsson, H.
    Tandstad, T.
    Bathen, T. F.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1189 - S1190
  • [29] An Automated Deep Learning-Based Framework for Uptake Segmentation and Classification on PSMA PET/CT Imaging of Patients with Prostate Cancer
    Li, Yang
    Imami, Maliha R.
    Zhao, Linmei
    Amindarolzarbi, Alireza
    Mena, Esther
    Leal, Jeffrey
    Chen, Junyu
    Gafita, Andrei
    Voter, Andrew F.
    Li, Xin
    Du, Yong
    Zhu, Chengzhang
    Choyke, Peter L.
    Zou, Beiji
    Jiao, Zhicheng
    Rowe, Steven P.
    Pomper, Martin G.
    Bai, Harrison X.
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (05): : 2206 - 2215
  • [30] PSMA-PET to detect and localise primary prostate cancer: a single centre retrospective series
    Koschel, S.
    Sutherland, T.
    Taubman, K.
    Yap, K.
    Schlicht, S.
    Lenaghan, D.
    Wong, L.
    BJU INTERNATIONAL, 2019, 123 : 75 - 76