Deep learning based automated delineation of the intraprostatic gross tumour volume in PSMA-PET for patients with primary prostate cancer

被引:9
|
作者
Holzschuh, Julius C. [1 ,2 ,3 ,24 ]
Mix, Michael [4 ]
Ruf, Juri [4 ]
Hoelscher, Tobias [6 ,7 ]
Kotzerke, Joerg [8 ,9 ]
Vrachimis, Alexis [10 ]
Doolan, Paul [22 ]
Ilhan, Harun [11 ]
Marinescu, Ioana M. [1 ,2 ]
Spohn, Simon K. B. [1 ,2 ,12 ]
Fechter, Tobias [1 ,2 ,5 ]
Kuhn, Dejan [1 ,2 ,5 ]
Bronsert, Peter [13 ]
Gratzke, Christian [14 ]
Grosu, Radu [15 ,16 ,23 ]
Kamran, Sophia C. [17 ]
Heidari, Pedram [18 ]
Ng, Thomas S. C. [18 ,19 ,20 ]
Koenik, Arda [19 ,20 ]
Grosu, Anca-Ligia
Zamboglou, Constantinos [21 ]
机构
[1] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Freiburg, Germany
[2] German Canc Consortium DKTK, Partner Site Freiburg, Freiburg, Germany
[3] Karlsruhe Inst Technol, Fac Comp Sci, Karlsruhe, Germany
[4] Univ Freiburg, Med Ctr, Dept Nucl Med, Freiburg, Germany
[5] Univ Freiburg, Fac Med, Med Ctr, Dept Radiat Oncol,Div Med Phys, Freiburg, Germany
[6] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[7] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[8] Fac Med, Dept Nucl Med, Dresden, Germany
[9] Univ Hosp Carl Gustav Carus, Dresden, Germany
[10] Univ Hosp European Univ, German Oncol Ctr, Dept Nucl Med, Limassol, Cyprus
[11] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Nucl Med, Munich, Germany
[12] Univ Freiburg, Fac Med, Berta Ottenstein Programme, Freiburg, Germany
[13] Univ Freiburg, Med Ctr, Dept Pathol, Freiburg, Germany
[14] Univ Freiburg, Med Ctr, Dept Urol, Freiburg, Germany
[15] Vienna Univ Technol, Inst Comp Engn, Cyber Phys Syst Div, Vienna, Austria
[16] Vienna Univ Technol, Fac Informat, Vienna, Austria
[17] Harvard Med Sch, Dept Radiat Oncol, Massachusetts Gen Hosp, Boston, MA USA
[18] Harvard Med Sch, Massachusetts Gen Hosp, Div Nucl Med & Mol Imaging, Dept Radiol, Boston, MA USA
[19] Harvard Med Sch, Brigham & Womens Hosp, Joint Program Nucl Med, Boston, MA USA
[20] Harvard Med Sch, Dana Farber Canc Inst, Dept Imaging, Boston, MA USA
[21] European Univ Cyprus, German Oncol Ctr, Limassol, Cyprus
[22] Univ Hosp European Univ, German Oncol Ctr, Dept Radiat Oncol, Limassol, Cyprus
[23] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY USA
[24] Univ Freiburg, Med Ctr, Dept Radiat Oncol, Robert Koch Str 3, D-79106 Freiburg, Germany
关键词
PSMA-PET; Prostate; CNN; Machine Learning; Segmentation; RADIATION-THERAPY; F-18-PSMA-1007; IMAGES; MRI;
D O I
10.1016/j.radonc.2023.109774
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: With the increased use of focal radiation dose escalation for primary prostate cancer (PCa), accurate delineation of gross tumor volume (GTV) in prostate-specific membrane antigen PET (PSMA-PET) becomes crucial. Manual approaches are time-consuming and observer dependent. The purpose of this study was to create a deep learning model for the accurate delineation of the intraprostatic GTV in PSMA-PET. Methods: A 3D U-Net was trained on 128 different 18F-PSMA-1007 PET images from three different institutions. Testing was done on 52 patients including one independent internal cohort (Freiburg: n = 19) and three independent external cohorts (Dresden: n = 14 18F-PSMA-1007, Boston: Massachusetts General Hospital (MGH): n = 9 18F-DCFPyL-PSMA and Dana-Farber Cancer Institute (DFCI): n = 10 68Ga-PSMA-11). Expert contours were generated in consensus using a validated technique. CNN predictions were compared to expert contours using Dice similarity coefficient (DSC). Co-registered whole-mount histology was used for the internal testing cohort to assess sensitivity/specificity. Results: Median DSCs were Freiburg: 0.82 (IQR: 0.73-0.88), Dresden: 0.71 (IQR: 0.53-0.75), MGH: 0.80 (IQR: 0.64-0.83) and DFCI: 0.80 (IQR: 0.67-0.84), respectively. Median sensitivity for CNN and expert contours were 0.88 (IQR: 0.68-0.97) and 0.85 (IQR: 0.75-0.88) (p = 0.40), respectively. GTV volumes did not differ significantly (p > 0.1 for all comparisons). Median specificity of 0.83 (IQR: 0.57-0.97) and 0.88 (IQR: 0.69-0.98) were observed for CNN and expert contours (p = 0.014), respectively. CNN prediction took 3.81 seconds on average per patient. Conclusion: The CNN was trained and tested on internal and external datasets as well as histopathology reference, achieving a fast GTV segmentation for three PSMA-PET tracers with high diagnostic accuracy comparable to manual experts.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Accuracy of gross tumour volume delineation with [68Ga]-PSMA-PET compared to histopathology for high-risk prostate cancer
    Zarei, Maryam
    Wallsten, Elin
    Grefve, Josefine
    Soderkvist, Karin
    Gunnlaugsson, Adalsteinn
    Sandgren, Kristina
    Jonsson, Joakim
    Lindberg, Angsana Keeratijarut
    Nilsson, Erik
    Bergh, Anders
    Zackrisson, Bjorn
    Moreau, Mathieu
    Karlsson, Camilla Thellenberg
    Olsson, Lars. E.
    Widmark, Anders
    Riklund, Katrine
    Blomqvist, Lennart
    Loegager, Vibeke Berg
    Axelsson, Jan
    Strandberg, Sara N.
    Nyholm, Tufve
    ACTA ONCOLOGICA, 2024, 63 : 503 - 510
  • [2] Automated Determination of the intraprostatic Tumor Volume by using Deep Learning in 18F-PSMA-PET Images in Patients with primary Prostate Carcinoma
    Holzschuh, Julius
    Mix, Michael
    Ruf, Juri
    Hoelscher, Tobias
    Kotzerke, Joerg
    Vrachimis, Alexis
    Doolan, Paul
    Ilhan, Harun
    Marinescu, Ioana M.
    Spohn, Simon Kb
    Fechter, Tobias
    Kostyszyn, Dejan
    Bronsert, Peter
    Gratzke, Christian
    Grosu, Radu
    Kamran, Sophia
    Heidari, Pedram
    Ng, Thomas S. C.
    Konik, Arda
    Grosu, Anca-L.
    Zamboglou, Constantinos
    STRAHLENTHERAPIE UND ONKOLOGIE, 2023, 199 : S24 - S25
  • [3] Optimal68Ga-PSMA and18F-PSMA PET window levelling for gross tumour volume delineation in primary prostate cancer
    Draulans, Cedric
    De Roover, Robin
    van der Heide, Uulke A.
    Kerkmeijer, Linda
    Smeenk, Robert J.
    Pos, Floris
    Vogel, Wouter V.
    Nagarajah, James
    Janssen, Marcel
    Isebaert, Sofie
    Maes, Frederik
    Mai, Cindy
    Oyen, Raymond
    Joniau, Steven
    Kunze-Busch, Martina
    Goffin, Karolien
    Haustermans, Karin
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (04) : 1211 - 1218
  • [4] Optimal 68Ga-PSMA and 18F-PSMA PET window levelling for gross tumour volume delineation in primary prostate cancer
    Cédric Draulans
    Robin De Roover
    Uulke A. van der Heide
    Linda Kerkmeijer
    Robert J. Smeenk
    Floris Pos
    Wouter V. Vogel
    James Nagarajah
    Marcel Janssen
    Sofie Isebaert
    Frederik Maes
    Cindy Mai
    Raymond Oyen
    Steven Joniau
    Martina Kunze-Busch
    Karolien Goffin
    Karin Haustermans
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 1211 - 1218
  • [5] Validation of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumor volume delineation in patients with primary prostate cancer based on comparison with histology reference
    Zamboglou, C.
    Drendel, V.
    Jilg, C. A.
    Rischke, H. C.
    Beck, T. I.
    Krauss, T.
    Schiller, F.
    Meyer, P. T.
    Grosu, A. L.
    EUROPEAN JOURNAL OF CANCER, 2016, 69 : S60 - S60
  • [6] MRI versus 68Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer
    Zamboglou, Constantinos
    Wieser, Gesche
    Hennies, Steffen
    Rempel, Irene
    Kirste, Simon
    Soschynski, Martin
    Rischke, Hans Christian
    Fechter, Tobias
    Jilg, Cordula A.
    Langer, Mathias
    Meyer, Philipp T.
    Bock, Michael
    Grosu, Anca-Ligia
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (05) : 889 - 897
  • [7] MRI versus 68Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer
    Constantinos Zamboglou
    Gesche Wieser
    Steffen Hennies
    Irene Rempel
    Simon Kirste
    Martin Soschynski
    Hans Christian Rischke
    Tobias Fechter
    Cordula A. Jilg
    Mathias Langer
    Philipp T. Meyer
    Michael Bock
    Anca-Ligia Grosu
    European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43 : 889 - 897
  • [8] Prostate MRI and PSMA-PET in the Primary Diagnosis of Prostate Cancer
    Cereser, Lorenzo
    Evangelista, Laura
    Giannarini, Gianluca
    Girometti, Rossano
    DIAGNOSTICS, 2023, 13 (16)
  • [9] Voxel-based PSMA-PET/histopathology analysis in patients with primary prostate cancer
    Zamboglou, C.
    Schiller, F.
    Fechter, T.
    Drendel, V.
    Jilg, C. A.
    Meyer, P. T.
    Mix, M.
    Grosu, A. L.
    RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S448 - S449
  • [10] Optimal 68Ga-PSMA-11 and 18F-PSMA-1007 PET window levelling for gross tumour volume delineation in primary prostate cancer
    Goffin, K.
    Draulans, C.
    De Roover, R.
    van der Heide, U. A.
    Kerkmeijer, L.
    Smeenk, R. J.
    Pos, F.
    Vogel, W. V.
    Nagarajah, J.
    Janssen, M.
    Isebaert, S.
    Maes, F.
    Mai, C.
    Oyen, R.
    Joniau, S.
    Kunze-Busch, M.
    Haustermans, K.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S404 - S405