Study exponential and polynomial stability of Timoshenko beam with boundary dissipative conditions of fractional derivative type

被引:0
|
作者
Messikh, C. [1 ]
Labidi, S. [1 ]
机构
[1] Badji Mokhtar Univ, Dept Math, BP 12, Annaba 23000, Algeria
关键词
35R11; 35B40; 35C20; 35A01; 93D15; 47B44; WAVE-EQUATION; DECAY; RATES;
D O I
10.1007/s12215-021-00711-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Timoshenko beam with only one dynamic control boundary condition of fractional derivative type. We show that the system is not uniformly stable by a spectrum method but it is polynomial stable using the frequency domain approach and Borichev and Tomilov's result. These results improve some recent results in the literature.
引用
收藏
页码:673 / 706
页数:34
相关论文
共 50 条
  • [31] Stability for an Klein-Gordon equation type with a boundary dissipation of fractional derivative type
    Rivera, Jaime Munoz
    Poblete, Veronica
    Vera, Octavio
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 249 - 273
  • [32] The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type
    Achouri, Zineb
    Amroun, Nour Eddine
    Benaissa, Abbes
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3837 - 3854
  • [33] Polynomial Decay of the Energy of Solutions of the Timoshenko System with Two Boundary Fractional Dissipations
    Alfalqi, Suleman
    Khiar, Hamid
    Bchatnia, Ahmed
    Beniani, Abderrahmane
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [34] Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type
    O. P. V. Villagran
    C. A. Nonato
    C. A. Raposo
    A. J. A. Ramos
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 803 - 831
  • [35] Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type
    Villagran, O. P. V.
    Nonato, C. A.
    Raposo, C. A.
    Ramos, A. J. A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 803 - 831
  • [36] Stability of the Rao-Nakra Sandwich Beam With a Dissipation of Fractional Derivative Type: Theoretical and Numerical Study
    Ammari, K.
    Komornik, V.
    Sepulveda, M.
    Vera, O.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6678 - 6690
  • [37] Improvement on the polynomial stability for a Timoshenko system with type III thermoelasticity
    Jorge Silva, Marcio A.
    Pinheiro, Sandro B.
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 95 - 100
  • [38] Stability for a boundary contact problem in thermoelastic Timoshenko’s beam
    J. E. Munoz Rivera
    C. A. da Costa Baldez
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [39] Free Vibration of Elastic Timoshenko Beam on Fractional Derivative Winkler Viscoelastic Foundation
    Yan, Qifang
    Su, Ziping
    ADVANCES IN CIVIL ENGINEERING AND ARCHITECTURE INNOVATION, PTS 1-6, 2012, 368-373 : 1034 - +
  • [40] Stability for a boundary contact problem in thermoelastic Timoshenko's beam
    Rivera, J. E. Munoz
    da Costa Baldez, C. A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):