Study exponential and polynomial stability of Timoshenko beam with boundary dissipative conditions of fractional derivative type

被引:0
|
作者
Messikh, C. [1 ]
Labidi, S. [1 ]
机构
[1] Badji Mokhtar Univ, Dept Math, BP 12, Annaba 23000, Algeria
关键词
35R11; 35B40; 35C20; 35A01; 93D15; 47B44; WAVE-EQUATION; DECAY; RATES;
D O I
10.1007/s12215-021-00711-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the Timoshenko beam with only one dynamic control boundary condition of fractional derivative type. We show that the system is not uniformly stable by a spectrum method but it is polynomial stable using the frequency domain approach and Borichev and Tomilov's result. These results improve some recent results in the literature.
引用
收藏
页码:673 / 706
页数:34
相关论文
共 50 条
  • [41] Decay of the timoshenko beam with thermal effect and memory boundary conditions
    M. Aouadi
    A. Soufyane
    Journal of Dynamical and Control Systems, 2013, 19 : 33 - 46
  • [42] Decay of the timoshenko beam with thermal effect and memory boundary conditions
    Aouadi, M.
    Soufyane, A.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2013, 19 (01) : 33 - 46
  • [43] Exponential stability of Hopfield neural networks with conformable fractional derivative
    Kutahyalioglu, Aysen
    Karakoc, Fatma
    NEUROCOMPUTING, 2021, 456 : 263 - 267
  • [44] Lack of exponential stability to Timoshenko system with viscoelastic Kelvin–Voigt type
    Andréia Malacarne
    Jaime Edilberto Muñoz Rivera
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [45] Exponential stability of a rotating Timoshenko beam under thermo-viscoelastic damping
    Berkani, Amirouche
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (03) : 426 - 445
  • [46] Memory-type boundary control of a laminated Timoshenko beam
    Feng, Baowei
    Soufyane, Abdelaziz
    MATHEMATICS AND MECHANICS OF SOLIDS, 2020, 25 (08) : 1568 - 1588
  • [47] A study of fractional differential equations and inclusions involving generalized Caputo-type derivative equipped with generalized fractional integral boundary conditions
    Ahmad, Bashir
    Alghanmi, Madeaha
    Ntouyas, Sodris K.
    Alsaedi, Ahmed
    AIMS MATHEMATICS, 2019, 4 (01): : 26 - 42
  • [48] Exponential stability for a class of boundary conditions on a Euler-Bernoulli beam subject to disturbances via boundary control
    Karagiannis, Dimitri
    Radisavljevic-Gajic, Verica
    JOURNAL OF SOUND AND VIBRATION, 2019, 446 : 387 - 411
  • [49] Polynomial Decay Rate for Dissipative Wave Equations with Mixed Boundary Conditions
    Laoubi, K.
    Seba, D.
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 629 - 646
  • [50] Polynomial Decay Rate for Dissipative Wave Equations with Mixed Boundary Conditions
    K. Laoubi
    D. Seba
    Acta Applicandae Mathematicae, 2020, 169 : 629 - 646