Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type

被引:4
|
作者
Villagran, O. P. V. [1 ]
Nonato, C. A. [2 ]
Raposo, C. A. [3 ]
Ramos, A. J. A. [4 ]
机构
[1] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[2] Univ Fed Bahia, Av Adhemar Barros S-N, BR-40170115 Salvador, BA, Brazil
[3] Univ Fed Sao Joao del Rei, Math Dept, Praca Frei Orlando 170, BR-36307352 Sao Joao Del Rei, MG, Brazil
[4] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
关键词
Semigroup theory; Waves coupled system; Polynomial stability; STABILIZATION;
D O I
10.1007/s12215-021-00703-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type. We have proved well posedness and polynomial stability using the semigroup theory and a sharp result provided by Borichev and Tomilov.
引用
收藏
页码:803 / 831
页数:29
相关论文
共 50 条
  • [1] Stability for a weakly coupled wave equations with a boundary dissipation of fractional derivative type
    O. P. V. Villagran
    C. A. Nonato
    C. A. Raposo
    A. J. A. Ramos
    Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 803 - 831
  • [2] Stability for an Klein-Gordon equation type with a boundary dissipation of fractional derivative type
    Rivera, Jaime Munoz
    Poblete, Veronica
    Vera, Octavio
    ASYMPTOTIC ANALYSIS, 2022, 127 (03) : 249 - 273
  • [3] Polynomial decay of the energy of solutions of coupled wave equations with locally boundary fractional dissipation
    Chaili, Amina
    Beniani, Abderrahmane
    Bchatnia, Ahmed
    Alfalqi, Suleman
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [4] INDIRECT BOUNDARY STABILIZATION FOR WEAKLY COUPLED DEGENERATE WAVE EQUATIONS UNDER FRACTIONAL DAMPING
    Benzaid, Rachid
    Benaissa, Abbes
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (03): : 1735 - 1770
  • [5] Energy Decay of Solutions to a Wave Equation with a Dynamic Boundary Dissipation of Fractional Derivative Type
    Benaissa, Abbes
    Benkhedda, Hanane
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2018, 37 (03): : 315 - 339
  • [6] Polynomial stability of a piezoelectric beam with magnetic effect and a boundary dissipation of the fractional derivative type
    Poblete, Veronica
    Toledo, Fernando
    Vera, Octavio
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (01) : 23 - 53
  • [7] Stability for Weakly Coupled Wave Equations with a General Internal Control of Diffusive Type
    Beniani, Abderrahmane
    Bahri, Noureddine
    Alharbi, Rabab
    Bouhali, Keltoum
    Zennir, Khaled
    AXIOMS, 2023, 12 (01)
  • [8] Stability results for the approximation of weakly coupled wave equations
    Abdallah, Farah
    Nicaise, Serge
    Valein, Julie
    Wehbe, Ali
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 29 - 34
  • [9] Indirect stability of a multidimensional coupled wave equations with one locally boundary fractional damping
    Akil, Mohammad
    Wehbe, Ali
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (12) : 2272 - 2300
  • [10] Fractional boundary stabilization for a coupled system of wave equations
    Kerdache M.
    Kesri M.
    Benaissa A.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2021, 67 (1) : 121 - 148