Temperature Time Series Prediction Model Based on Time Series Decomposition and Bi-LSTM Network

被引:7
|
作者
Zhang, Kun [1 ]
Huo, Xing [1 ]
Shao, Kun [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Software, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
time-series decomposition; deep learning; neural network; time-series prediction;
D O I
10.3390/math11092060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Utilizing a temperature time-series prediction model to achieve good results can help us to accurately sense the changes occurring in temperature levels in advance, which is important for human life. However, the random fluctuations occurring in a temperature time series can reduce the accuracy of the prediction model. Decomposing the time-series data prior to performing a prediction can effectively reduce the influence of random fluctuations in the data and consequently improve the prediction accuracy results. In the present study, we propose a temperature time-series prediction model that combines the seasonal-trend decomposition procedure based on the loess (STL) decomposition method, the jumps upon spectrum and trend (JUST) algorithm, and the bidirectional long short-term memory (Bi-LSTM) network. This model can achieve daily average temperature predictions for cities located in China. Firstly, we decompose the time series into trend, seasonal, and residual components using the JUST and STL algorithms. Then, the components determined by the two methods are combined. Secondly, the three components and original data are fed into the two-layer Bi-LSTM model for training purposes. Finally, the prediction results achieved for both the components and original data are merged by learnable weights and output as the final result. The experimental results show that the average root mean square and average absolute errors of our proposed model on the dataset are 0.2187 and 0.1737, respectively, which are less than the values 4.3997 and 3.3349 attained for the Bi-LSTM model, 2.5343 and 1.9265 for the EMD-LSTM model, and 0.9336 and 0.7066 for the STL-LSTM model.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Ship Trajectory Prediction Model Based on Improved Bi-LSTM
    Li, Weifeng
    Lian, Yifan
    Liu, Yaochen
    Shi, Guoyou
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2024, 10 (03):
  • [42] FINANCIAL TIME SERIES PREDICTION MODEL BASED RECURRENT NEURAL NETWORK
    Cheng Chaozhi
    Gao Yachun
    Ni Jingwei
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 33 - 38
  • [43] FD-LSTM: A Fuzzy LSTM Model for Chaotic Time-Series Prediction
    Langeroudi, Milad Keshtkar
    Yamaghani, Mohammad Reza
    Khodaparast, Siavash
    IEEE INTELLIGENT SYSTEMS, 2022, 37 (04) : 70 - 78
  • [44] Prediction of Labor Unemployment Based on Time Series Model and Neural Network Model
    Liu, Xitao
    Li, Lihui
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [45] Time series prediction based on LSTM neural network for top tension response of umbilical cables
    Yan, Jun
    Zhang, Youyou
    Su, Qi
    Li, Rundong
    Li, Hao
    Lu, Zhaokuan
    Lu, Hailong
    Lu, Qingzhen
    MARINE STRUCTURES, 2023, 91
  • [46] Short-Term Traffic Flow Prediction for Hybrid Time Series Decomposition Analysis and LSTM Neural Network
    Yu, Yinghao
    Zhang, Weibin
    Qi, Yong
    Guo, Haifeng
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 2350 - 2362
  • [47] Rice Crop Detection Using LSTM, Bi-LSTM, and Machine Learning Models from Sentinel-1 Time Series
    de Castro Filho, Hugo Crisostomo
    de Carvalho Junior, Osmar Abilio
    Ferreira de Carvalho, Osmar Luiz
    de Bem, Pablo Pozzobon
    de Moura, Rebeca dos Santos
    de Albuquerque, Anesmar Olino
    Silva, Cristiano Rosa
    Guimaraes Ferreira, Pedro Henrique
    Guimaraes, Renato Fontes
    Trancoso Gomes, Roberto Arnaldo
    REMOTE SENSING, 2020, 12 (16)
  • [48] Financial time series forecasting model based on CEEMDAN and LSTM
    Cao, Jian
    Li, Zhi
    Li, Jian
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 519 : 127 - 139
  • [49] Network evasion detection with Bi-LSTM model
    Chen, Kehua
    Jia, JingPing
    2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [50] EA-LSTM: Evolutionary attention-based LSTM for time series prediction
    Li, Youru
    Zhu, Zhenfeng
    Kong, Deqiang
    Han, Hua
    Zhao, Yao
    KNOWLEDGE-BASED SYSTEMS, 2019, 181