Ship Trajectory Prediction Model Based on Improved Bi-LSTM

被引:2
|
作者
Li, Weifeng [1 ]
Lian, Yifan [1 ]
Liu, Yaochen [1 ]
Shi, Guoyou [1 ]
机构
[1] Dalian Maritime Univ, Nav Coll, Dalian 116026, Peoples R China
关键词
Automatic identification system (AIS); Trajectory prediction; Deep learning; Optimization algorithm;
D O I
10.1061/AJRUA6.RUENG-1234
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ship trajectory prediction plays an important role in ensuring ship safety; through accurate ship positioning, the future trajectory of ships and their encounter time and location can be obtained, which facilitates the maritime regulatory authorities to assess the risks of ship encounters and implement effective traffic control. Meanwhile, with the rapid development of the shipping industry, the increasingly complex maritime traffic poses potential risks, which may cause serious traffic accidents and huge economic losses. To improve the accuracy of ship navigation risk prediction and ensure the safety of ship navigation, automatic identification system (AIS) data and deep learning models are used to extract the ship trajectory change feature pattern and apply it to ship trajectory prediction. This study builds the improved bidirectional long short-term memory network (Bi-LSTM) model based on rectified adaptive moment estimation (Radam) and lookahead, respectively. The AIS data of the Port of Tianjin area were selected for model training, and the results of comparison experiments show that the improved Bi-LSTM model has a stronger generalization ability, which further improves the trajectory prediction accuracy, and shows excellent predictive performance. The prediction model is feasible for the prediction of ship navigation trajectory.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data
    Park, Jinwan
    Jeong, Jungsik
    Park, Youngsoo
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (09)
  • [2] Trajectory outlier detection algorithm based on Bi-LSTM model
    Han Z.
    Huang T.
    Ren W.
    Xu G.
    Journal of Radars, 2019, 8 (01) : 36 - 43
  • [3] Research into Ship Trajectory Prediction Based on An Improved LSTM Network
    Zhang, Jiangnan
    Wang, Hai
    Cui, Fengjuan
    Liu, Yongshuo
    Liu, Zhenxing
    Dong, Junyu
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (07)
  • [4] AIS-Based Intelligent Vessel Trajectory Prediction Using Bi-LSTM
    Yang, Cheng-Hong
    Wu, Chih-Hsien
    Shao, Jen-Chung
    Wang, Yi-Chuan
    Hsieh, Chih-Min
    IEEE ACCESS, 2022, 10 : 24302 - 24315
  • [5] A Bi-LSTM and AutoEncoder Based Framework for Multi-step Flight Trajectory Prediction
    Wu, Han
    Liang, Yan
    Zhou, Bin
    Sun, Hao
    2023 8TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING, ICCRE, 2023, : 44 - 50
  • [6] RUL Prediction Method of a Rolling Bearing Based on Improved SAE and Bi-LSTM
    Kang S.-Q.
    Zhou Y.
    Wang Y.-J.
    Xie J.-B.
    Mikulovich V.I.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (09): : 2327 - 2336
  • [7] An Improved Generating Energy Prediction Method Based on Bi-LSTM and Attention Mechanism
    He, Bo
    Ma, Runze
    Zhang, Wenwei
    Zhu, Jun
    Zhang, Xingyuan
    ELECTRONICS, 2022, 11 (12)
  • [8] Research on Ship Collision Probability Model Based on Monte Carlo Simulation and Bi-LSTM
    Vuksa, Srdan
    Vidan, Pero
    Bukljas, Mihaela
    Pavic, Stjepan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (08)
  • [9] Improved Danmaku Emotion Analysis and Its Application Based on Bi-LSTM Model
    Wang, Shaokang
    Chen, Yihao
    Ming, Hongjun
    Huang, Hai
    Mi, Lingxian
    Shi, Zengyi
    IEEE ACCESS, 2020, 8 : 114123 - 114134
  • [10] Research on the Prediction Problem of Satellite Mission Schedulability Based on Bi-LSTM Model
    Zhang, Guohui
    Li, Xinhong
    Wang, Xun
    Zhang, Zhibing
    Hu, Gangxuan
    Li, Yanyan
    Zhang, Rui
    AEROSPACE, 2022, 9 (11)