Temperature Time Series Prediction Model Based on Time Series Decomposition and Bi-LSTM Network

被引:7
|
作者
Zhang, Kun [1 ]
Huo, Xing [1 ]
Shao, Kun [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Software, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
time-series decomposition; deep learning; neural network; time-series prediction;
D O I
10.3390/math11092060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Utilizing a temperature time-series prediction model to achieve good results can help us to accurately sense the changes occurring in temperature levels in advance, which is important for human life. However, the random fluctuations occurring in a temperature time series can reduce the accuracy of the prediction model. Decomposing the time-series data prior to performing a prediction can effectively reduce the influence of random fluctuations in the data and consequently improve the prediction accuracy results. In the present study, we propose a temperature time-series prediction model that combines the seasonal-trend decomposition procedure based on the loess (STL) decomposition method, the jumps upon spectrum and trend (JUST) algorithm, and the bidirectional long short-term memory (Bi-LSTM) network. This model can achieve daily average temperature predictions for cities located in China. Firstly, we decompose the time series into trend, seasonal, and residual components using the JUST and STL algorithms. Then, the components determined by the two methods are combined. Secondly, the three components and original data are fed into the two-layer Bi-LSTM model for training purposes. Finally, the prediction results achieved for both the components and original data are merged by learnable weights and output as the final result. The experimental results show that the average root mean square and average absolute errors of our proposed model on the dataset are 0.2187 and 0.1737, respectively, which are less than the values 4.3997 and 3.3349 attained for the Bi-LSTM model, 2.5343 and 1.9265 for the EMD-LSTM model, and 0.9336 and 0.7066 for the STL-LSTM model.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Time Series Forecasting Fusion Network Model Based on Prophet and Improved LSTM
    Liu, Weifeng
    Yu, Xin
    Zhao, Qinyang
    Cheng, Guang
    Hou, Xiaobing
    He, Shengqi
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3199 - 3219
  • [32] Wavelet decomposition and autoregressive model for time series prediction
    Ben Mabrouk, A.
    Ben Abdallah, N.
    Dhifaoui, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) : 334 - 340
  • [33] Time series prediction method based on Convolutional Autoencoder and LSTM
    Zhao, Xia
    Han, Xiao
    Su, Weijun
    Yan, Zhen
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 5790 - 5793
  • [34] Time Series Prediction of Wind Speed Based on SARIMA and LSTM
    Xiong, Caiquan
    Yu, Congcong
    Gu, Xiaohui
    Xu, Shiqiang
    COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS, CISIS-2021, 2021, 278 : 57 - 67
  • [35] Time Series Prediction with Autoencoding LSTM Networks
    Succetti, Federico
    Ceschini, Andrea
    Di Luzio, Francesco
    Rosato, Antonello
    Panella, Massimo
    ADVANCES IN COMPUTATIONAL INTELLIGENCE (IWANN 2021), PT II, 2021, 12862 : 306 - 317
  • [36] Long Time Series Land Cover Classification in China from 1982 to 2015 Based on Bi-LSTM Deep Learning
    Wang, Haoyu
    Zhao, Xiang
    Zhang, Xin
    Wu, Donghai
    Du, Xiaozheng
    REMOTE SENSING, 2019, 11 (14)
  • [37] Crude oil time series prediction model based on LSTM network with chaotic Henry gas solubility optimization
    Altan, Aytac
    Karasu, Seckin
    ENERGY, 2022, 242
  • [38] A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series
    Rongxi Wang
    Caiyuan Peng
    Jianmin Gao
    Zhiyong Gao
    Hongquan Jiang
    Computational and Applied Mathematics, 2020, 39
  • [39] A dilated convolution network-based LSTM model for multi-step prediction of chaotic time series
    Wang, Rongxi
    Peng, Caiyuan
    Gao, Jianmin
    Gao, Zhiyong
    Jiang, Hongquan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (01):
  • [40] Based on the Improved PSO-TPA-LSTM Model Chaotic Time Series Prediction
    Cai, Zijian
    Feng, Guolin
    Wang, Qiguang
    ATMOSPHERE, 2023, 14 (11)