Hyperbolic angles in Lorentzian length spaces and timelike curvature bounds

被引:6
|
作者
Beran, Tobias [1 ]
Saemann, Clemens [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Oxford, Math Inst, Oxford, England
基金
奥地利科学基金会;
关键词
METRIC-MEASURE-SPACES; SPACETIMES; GEOMETRY; THEOREM;
D O I
10.1112/jlms.12726
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within the synthetic-geometric framework of Lorentzian (pre-)length spaces developed in Kunzinger and Samann (Ann. Glob. Anal. Geom. 54 (2018), no. 3, 399-447) we introduce a notion of a hyperbolic angle, an angle between timelike curves and related concepts such as timelike tangent cone and exponential map. This provides valuable technical tools for the further development of the theory and paves the way for the main result of the article, which is the characterization of timelike curvature bounds (defined via triangle comparison) with an angle monotonicity condition. Further, we improve on a geodesic non-branching result for spaces with timelike curvature bounded below.
引用
收藏
页码:1823 / 1880
页数:58
相关论文
共 50 条
  • [21] On the causal hierarchy of Lorentzian length spaces
    Hau, Luis Ake
    Cabrera Pacheco, Armando J.
    Solis, Didier A.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [22] Generalized products and Lorentzian length spaces
    Soultanis, Elefterios
    LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (01)
  • [23] Time Functions on Lorentzian Length Spaces
    Burtscher, Annegret
    Garcia-Heveling, Leonardo
    ANNALES HENRI POINCARE, 2024,
  • [24] Inextendibility of spacetimes and Lorentzian length spaces
    Grant, James D. E.
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 133 - 147
  • [25] Inextendibility of spacetimes and Lorentzian length spaces
    James D. E. Grant
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2019, 55 : 133 - 147
  • [26] THE EQUIVALENCE OF SMOOTH AND SYNTHETIC NOTIONS OF TIMELIKE SECTIONAL CURVATURE BOUNDS
    Beran, Tobias
    Kunzinger, Michael
    Ohanyan, Argam
    Rott, Felix
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 783 - 797
  • [27] Gluing constructions for Lorentzian length spaces
    Beran, Tobias
    Rott, Felix
    MANUSCRIPTA MATHEMATICA, 2024, 173 (1-2) : 667 - 710
  • [28] Gluing constructions for Lorentzian length spaces
    Tobias Beran
    Felix Rott
    manuscripta mathematica, 2024, 173 : 667 - 710
  • [29] Curvature bounds for configuration spaces
    Erbar, Matthias
    Huesmann, Martin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (01) : 397 - 430
  • [30] Curvature bounds for configuration spaces
    Matthias Erbar
    Martin Huesmann
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 397 - 430