Gluing constructions for Lorentzian length spaces

被引:4
|
作者
Beran, Tobias [1 ]
Rott, Felix [1 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
53C23 (primary); 53C50; 53B30; 51F99; 51K10 (secondary);
D O I
10.1007/s00229-023-01469-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an analogue to the amalgamation of metric spaces into the setting of Lorentzian pre-length spaces. This provides a very general process of constructing new spaces out of old ones. Themain application in thiswork is an analogue of the gluing theorem of Reshetnyak for CAT(k) spaces, which roughly states that gluing is compatible with upper curvature bounds. Due to the absence of a notion of spacelike distance in Lorentzian pre-length spaces we can only formulate the theorem in terms of (strongly causal) spacetimes viewed as Lorentzian length spaces.
引用
收藏
页码:667 / 710
页数:44
相关论文
共 50 条
  • [1] Gluing constructions for Lorentzian length spaces
    Tobias Beran
    Felix Rott
    manuscripta mathematica, 2024, 173 : 667 - 710
  • [3] Lorentzian length spaces
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2018, 54 : 399 - 447
  • [4] Lorentzian length spaces
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) : 399 - 447
  • [5] On conformal Lorentzian length spaces
    Ebrahimi, Neda
    Vatandoost, Mehdi
    Pourkhandani, Rahimeh
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [6] On conformal Lorentzian length spaces
    Neda Ebrahimi
    Mehdi Vatandoost
    Rahimeh Pourkhandani
    Analysis and Mathematical Physics, 2023, 13
  • [7] On the causal hierarchy of Lorentzian length spaces
    Hau, Luis Ake
    Cabrera Pacheco, Armando J.
    Solis, Didier A.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [8] Generalized products and Lorentzian length spaces
    Soultanis, Elefterios
    LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (01)
  • [9] Time Functions on Lorentzian Length Spaces
    Burtscher, Annegret
    Garcia-Heveling, Leonardo
    ANNALES HENRI POINCARE, 2024,
  • [10] On curvature bounds in Lorentzian length spaces
    Beran, Tobias
    Kunzinger, Michael
    Rott, Felix
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):