On conformal Lorentzian length spaces

被引:0
|
作者
Neda Ebrahimi
Mehdi Vatandoost
Rahimeh Pourkhandani
机构
[1] Shahid Bahonar University of Kerman,Department of Pure Mathematics, Faculty of Mathematics and Computer
[2] Hakim Sabzevari University,Department of Mathematics and Computer Sciences
[3] Shahid Bahonar University of Kerman,Mahani Mathematical Research Center
来源
关键词
Length space; Lorentzian length space; Conformal geometry; Causality theory; 53C23; 53C50; 53B30; 53C80;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Lorentzian length spaces have been introduced inspired by length spaces. One of the main objects of study in these spaces is a time separation function τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which is closely linked to their causal structure. In analogy to the metric d in length spaces, τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} can express basic notions and many results in the setting of Lorentzian length spaces. In this paper, the concept of conformal Lorentzian length spaces is introduced and a novel version of limit curve theorem is proven. Finally, the global hyperbolic and causally simple Lorentzian length spaces are characterized.
引用
收藏
相关论文
共 50 条
  • [1] On conformal Lorentzian length spaces
    Ebrahimi, Neda
    Vatandoost, Mehdi
    Pourkhandani, Rahimeh
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (06)
  • [2] Lorentzian length spaces
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2018, 54 : 399 - 447
  • [3] Lorentzian length spaces
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2018, 54 (03) : 399 - 447
  • [4] CONFORMAL VECTOR FIELDS AND CONFORMAL TRANSFORMATIONS OF SYMMETRIC LORENTZIAN SPACES
    CAHEN, M
    KERBRAT, Y
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1978, 57 (02): : 99 - 132
  • [5] On the causal hierarchy of Lorentzian length spaces
    Hau, Luis Ake
    Cabrera Pacheco, Armando J.
    Solis, Didier A.
    CLASSICAL AND QUANTUM GRAVITY, 2020, 37 (21)
  • [6] Generalized products and Lorentzian length spaces
    Soultanis, Elefterios
    LETTERS IN MATHEMATICAL PHYSICS, 2025, 115 (01)
  • [7] Time Functions on Lorentzian Length Spaces
    Burtscher, Annegret
    Garcia-Heveling, Leonardo
    ANNALES HENRI POINCARE, 2024,
  • [8] On curvature bounds in Lorentzian length spaces
    Beran, Tobias
    Kunzinger, Michael
    Rott, Felix
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [9] Inextendibility of spacetimes and Lorentzian length spaces
    Grant, James D. E.
    Kunzinger, Michael
    Saemann, Clemens
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (01) : 133 - 147
  • [10] Inextendibility of spacetimes and Lorentzian length spaces
    James D. E. Grant
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2019, 55 : 133 - 147