On conformal Lorentzian length spaces

被引:0
|
作者
Neda Ebrahimi
Mehdi Vatandoost
Rahimeh Pourkhandani
机构
[1] Shahid Bahonar University of Kerman,Department of Pure Mathematics, Faculty of Mathematics and Computer
[2] Hakim Sabzevari University,Department of Mathematics and Computer Sciences
[3] Shahid Bahonar University of Kerman,Mahani Mathematical Research Center
来源
关键词
Length space; Lorentzian length space; Conformal geometry; Causality theory; 53C23; 53C50; 53B30; 53C80;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Lorentzian length spaces have been introduced inspired by length spaces. One of the main objects of study in these spaces is a time separation function τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which is closely linked to their causal structure. In analogy to the metric d in length spaces, τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} can express basic notions and many results in the setting of Lorentzian length spaces. In this paper, the concept of conformal Lorentzian length spaces is introduced and a novel version of limit curve theorem is proven. Finally, the global hyperbolic and causally simple Lorentzian length spaces are characterized.
引用
收藏
相关论文
共 50 条