Hyperbolic angles in Lorentzian length spaces and timelike curvature bounds

被引:6
|
作者
Beran, Tobias [1 ]
Saemann, Clemens [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Oxford, Math Inst, Oxford, England
基金
奥地利科学基金会;
关键词
METRIC-MEASURE-SPACES; SPACETIMES; GEOMETRY; THEOREM;
D O I
10.1112/jlms.12726
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within the synthetic-geometric framework of Lorentzian (pre-)length spaces developed in Kunzinger and Samann (Ann. Glob. Anal. Geom. 54 (2018), no. 3, 399-447) we introduce a notion of a hyperbolic angle, an angle between timelike curves and related concepts such as timelike tangent cone and exponential map. This provides valuable technical tools for the further development of the theory and paves the way for the main result of the article, which is the characterization of timelike curvature bounds (defined via triangle comparison) with an angle monotonicity condition. Further, we improve on a geodesic non-branching result for spaces with timelike curvature bounded below.
引用
收藏
页码:1823 / 1880
页数:58
相关论文
共 50 条