Transposed Poisson structures on solvable and perfect Lie algebras

被引:4
|
作者
Kaygorodov, Ivan [1 ]
Khudoyberdiyev, Abror [2 ,3 ]
机构
[1] Univ Beira Interior, CMA UBI, Covilha, Portugal
[2] Acad Sci Uzbek, VI Romanovskiy Inst Math, Tashkent, Uzbekistan
[3] Natl Univ Uzbekistan, Tashkent, Uzbekistan
关键词
Lie algebra; transposed Poisson algebra; delta-derivation; GALILEI GROUP; SYMMETRIES;
D O I
10.1088/1751-8121/ad1620
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We described all transposed Poisson algebra structures on oscillator Lie algebras, i.e. on one-dimensional solvable extensions of the (2n+1) -dimensional Heisenberg algebra; on solvable Lie algebras with naturally graded filiform nilpotent radical; on (n+1) -dimensional solvable extensions of the (2n+1) -dimensional Heisenberg algebra; and on n-dimensional solvable extensions of the n-dimensional algebra with trivial multiplication. We also answered one question on transposed Poisson algebras early posted in a paper by Beites, Ferreira and Kaygorodov. Namely, we found that the semidirect product of sl(2) and irreducible module gives a finite-dimensional Lie algebra with non-trivial 1/2 -derivations, but without non-trivial transposed Poisson structures.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Poisson and symplectic structures on Lie algebras .1.
    Alekseevsky, DV
    Perelomov, AM
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (03) : 191 - 211
  • [32] LIE-POISSON STRUCTURES OVER DIFFERENTIAL ALGEBRAS
    Zharinov, V. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (03) : 1337 - 1349
  • [33] Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras
    Albuquerque, H.
    Barreiro, E.
    Benayadi, S.
    Boucetta, M.
    Sanchez, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [34] Solvable Lie A-algebras
    Towers, David A.
    JOURNAL OF ALGEBRA, 2011, 340 (01) : 1 - 12
  • [35] Controllability of solvable Lie algebras
    Mittenhuber D.
    Journal of Dynamical and Control Systems, 2000, 6 (3) : 453 - 459
  • [36] SOLVABLE COMPLEMENTED LIE ALGEBRAS
    Towers, David A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3823 - 3830
  • [37] Solvable Lie algebras are not that hypo
    Conti, Diego
    Fernandez, Marisa
    Santisteban, Jose A.
    TRANSFORMATION GROUPS, 2011, 16 (01) : 51 - 69
  • [38] Solvable Lie algebras are not that hypo
    Diego Conti
    Marisa Fernández
    José A. Santisteban
    Transformation Groups, 2011, 16 : 51 - 69
  • [39] Solvable quadratic Lie algebras
    Zhu Linsheng
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (04): : 477 - 493
  • [40] Classification of solvable Lie algebras
    de Graaf, WA
    EXPERIMENTAL MATHEMATICS, 2005, 14 (01) : 15 - 25