Transposed Poisson structures on solvable and perfect Lie algebras

被引:4
|
作者
Kaygorodov, Ivan [1 ]
Khudoyberdiyev, Abror [2 ,3 ]
机构
[1] Univ Beira Interior, CMA UBI, Covilha, Portugal
[2] Acad Sci Uzbek, VI Romanovskiy Inst Math, Tashkent, Uzbekistan
[3] Natl Univ Uzbekistan, Tashkent, Uzbekistan
关键词
Lie algebra; transposed Poisson algebra; delta-derivation; GALILEI GROUP; SYMMETRIES;
D O I
10.1088/1751-8121/ad1620
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We described all transposed Poisson algebra structures on oscillator Lie algebras, i.e. on one-dimensional solvable extensions of the (2n+1) -dimensional Heisenberg algebra; on solvable Lie algebras with naturally graded filiform nilpotent radical; on (n+1) -dimensional solvable extensions of the (2n+1) -dimensional Heisenberg algebra; and on n-dimensional solvable extensions of the n-dimensional algebra with trivial multiplication. We also answered one question on transposed Poisson algebras early posted in a paper by Beites, Ferreira and Kaygorodov. Namely, we found that the semidirect product of sl(2) and irreducible module gives a finite-dimensional Lie algebra with non-trivial 1/2 -derivations, but without non-trivial transposed Poisson structures.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Solvable quadratic Lie algebras
    Linsheng Zhu
    Science in China Series A, 2006, 49 : 477 - 493
  • [42] REPRESENTATIONS OF SOLVABLE LIE ALGEBRAS
    REED, BE
    MICHIGAN MATHEMATICAL JOURNAL, 1969, 16 (03) : 227 - &
  • [43] Solvable Lie algebras and graphs
    Grantcharov, Gueo
    Grantcharov, Vladimir
    Iliev, Plamen
    JOURNAL OF ALGEBRA, 2017, 491 : 474 - 489
  • [44] Solvable quadratic Lie algebras
    ZHU Linsheng Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2006, (04) : 477 - 493
  • [45] Transposed Poisson structures on not-finitely graded Witt-type algebras
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    Shermatova, Zarina
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01):
  • [46] A Poisson formula for solvable Lie groups
    Jaworski, W
    JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 : 183 - 208
  • [47] On the simple transposed Poisson algebras and Jordan superalgebras
    Ouaridi, Amir Fernandez
    JOURNAL OF ALGEBRA, 2024, 641 : 173 - 198
  • [48] Nilpotent orbits in simple Lie algebras and their transverse Poisson structures
    Damianou, P. A.
    Sabourin, H.
    Vanhaecke, P.
    GEOMETRY AND PHYSICS XVI INTERNATIONAL FALL WORKSHOP, 2008, 1023 : 148 - +
  • [49] N=2 structures on solvable Lie algebras: The c=9 classification
    FigueroaOFarrill, JM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 177 (01) : 129 - 156
  • [50] Transverse Poisson structures to adjoint orbits in semisimple Lie algebras
    Damianou, Pantelis A.
    Sabourin, Herve
    Vanhaecke, Pol
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 232 (01) : 111 - 138