Solvable Lie algebras are not that hypo

被引:7
|
作者
Conti, Diego [1 ]
Fernandez, Marisa [2 ]
Santisteban, Jose A. [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, E-48080 Bilbao, Spain
关键词
53C25 (primary); 53C15, 17B30, 53D15 (secondary);
D O I
10.1007/s00031-011-9127-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a type of left-invariant structure on Lie groups or, equivalently, on Lie algebras. We introduce obstructions to the existence of a hypo structure, namely the five-dimensional geometry of hypersurfaces in manifolds with holonomy SU(3). The choice of a splitting g* = V-1 circle plus V-2, and the vanishing of certain associated cohomology groups, determine a first obstruction. We also construct necessary conditions for the existence of a hypo structure with a fixed almost-contact form. For nonunimodular Lie algebras, we derive an obstruction to the existence of a hypo structure, with no choice involved. We apply these methods to classify solvable Lie algebras that admit a hypo structure.
引用
收藏
页码:51 / 69
页数:19
相关论文
共 50 条
  • [1] Solvable Lie algebras are not that hypo
    Diego Conti
    Marisa Fernández
    José A. Santisteban
    [J]. Transformation Groups, 2011, 16 : 51 - 69
  • [2] Solvable 3-Lie Algebras with a Maximal Hypo-Nilpotent Ideal N
    Bai, Rui-pu
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 409 - 411
  • [3] SOLVABLE 3-LIE ALGEBRAS WITH A MAXIMAL HYPO-NILPOTENT IDEAL N
    Bai, Rui-Pu
    Shen, Cai-Hong
    Zhang, Yao-Zhong
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 21 : 43 - 62
  • [4] Solvable Lie A-algebras
    Towers, David A.
    [J]. JOURNAL OF ALGEBRA, 2011, 340 (01) : 1 - 12
  • [5] Controllability of solvable Lie algebras
    Mittenhuber D.
    [J]. Journal of Dynamical and Control Systems, 2000, 6 (3) : 453 - 459
  • [6] SOLVABLE COMPLEMENTED LIE ALGEBRAS
    Towers, David A.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3823 - 3830
  • [7] Solvable quadratic Lie algebras
    Zhu Linsheng
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2006, 49 (04): : 477 - 493
  • [8] Classification of solvable Lie algebras
    de Graaf, WA
    [J]. EXPERIMENTAL MATHEMATICS, 2005, 14 (01) : 15 - 25
  • [9] Solvable quadratic Lie algebras
    Linsheng Zhu
    [J]. Science in China Series A, 2006, 49 : 477 - 493
  • [10] REPRESENTATIONS OF SOLVABLE LIE ALGEBRAS
    REED, BE
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 1969, 16 (03) : 227 - &