Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network

被引:7
|
作者
Xu, Haitao [1 ,2 ]
Pan, Haipeng [1 ,2 ]
Li, Junfeng [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Informat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Sci Tech Univ, Changshan Res Inst, Quzhou 324299, Peoples R China
关键词
bearing ring; surface defect detection; deep learning; YOLOv5;
D O I
10.3390/s23177443
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Considering the characteristics of complex texture backgrounds, uneven brightness, varying defect sizes, and multiple defect types of the bearing surface images, a surface defect detection method for bearing rings is proposed based on improved YOLOv5. First, replacing the C3 module in the backbone network with a C2f module can effectively reduce the number of network parameters and computational complexity, thereby improving the speed and accuracy of the backbone network. Second, adding the SPD module into the backbone and neck networks enhances their ability to process low-resolution and small-object images. Next, replacing the nearest-neighbor upsampling with the lightweight and universal CARAFE operator fully utilizes feature semantic information, enriches contextual information, and reduces information loss during transmission, thereby effectively improving the model's diversity and robustness. Finally, we constructed a dataset of bearing ring surface images collected from industrial sites and conducted numerous experiments based on this dataset. Experimental results show that the mean average precision (mAP) of the network is 97.3%, especially for dents and black spot defects, improved by 2.2% and 3.9%, respectively, and that the detection speed can reach 100 frames per second (FPS). Compared with mainstream surface defect detection algorithms, the proposed method shows significant improvements in both accuracy and detection time and can meet the requirements of industrial defect detection.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Improved Yolov5 Algorithm for Surface Defect Detection of Solar Cell
    Li, Pengjie
    Shan, Shuo
    Zeng, Pengzhong
    Wei, Haikun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3601 - 3605
  • [32] Surface Defect Detection of Remanufactured Products by Using the Improved Yolov5
    Sun, Weice
    Liu, Zhengqing
    Wang, Qiucheng
    Zhu, Bingbin
    ADVANCES IN REMANUFACTURING, IWAR 2023, 2024, : 239 - 250
  • [33] Aero-Engine Surface Defect Detection Model Based on Improved YOLOv5
    Li, Xin
    Li, Xiangrong
    Wang, Cheng
    Li, Qiuliang
    Li, Zhuoyue
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (16)
  • [34] Surface Defect Detection for Automated Tape Laying and Winding Based on Improved YOLOv5
    Wen, Liwei
    Li, Shihao
    Ren, Jiajun
    MATERIALS, 2023, 16 (15)
  • [35] Strip Surface Defect Detection Algorithm Based on YOLOv5
    Wang, Han
    Yang, Xiuding
    Zhou, Bei
    Shi, Zhuohao
    Zhan, Daohua
    Huang, Renbin
    Lin, Jian
    Wu, Zhiheng
    Long, Danfeng
    MATERIALS, 2023, 16 (07)
  • [36] Surface Defect Detection of Industrial Parts Based on YOLOv5
    Le, Hai Feng
    Zhang, Lu Jia
    Liu, Yan Xia
    IEEE ACCESS, 2022, 10 : 130784 - 130794
  • [37] Railway fastener defect detection based on improved YOLOv5 algorithm
    Su, Zhitong
    Han, Kai
    Song, Wei
    Ning, Keqing
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1923 - 1927
  • [38] Application of improved YOLOV5 in plate defect detection
    Xiong, Chenglong
    Hu, Sanbao
    Fang, Zhigang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022,
  • [39] A Sewer Pipeline Defect Detection Method Based on Improved YOLOv5
    Wang, Tong
    Li, Yuhang
    Zhai, Yidi
    Wang, Weihua
    Huang, Rongjie
    PROCESSES, 2023, 11 (08)
  • [40] A rail fastener defect detection algorithm based on improved YOLOv5
    Wang, Ling
    Zang, Qiuyu
    Zhang, Kehua
    Wu, Lintong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT, 2024, 238 (07) : 851 - 862