Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network

被引:7
|
作者
Xu, Haitao [1 ,2 ]
Pan, Haipeng [1 ,2 ]
Li, Junfeng [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Informat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Sci Tech Univ, Changshan Res Inst, Quzhou 324299, Peoples R China
关键词
bearing ring; surface defect detection; deep learning; YOLOv5;
D O I
10.3390/s23177443
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Considering the characteristics of complex texture backgrounds, uneven brightness, varying defect sizes, and multiple defect types of the bearing surface images, a surface defect detection method for bearing rings is proposed based on improved YOLOv5. First, replacing the C3 module in the backbone network with a C2f module can effectively reduce the number of network parameters and computational complexity, thereby improving the speed and accuracy of the backbone network. Second, adding the SPD module into the backbone and neck networks enhances their ability to process low-resolution and small-object images. Next, replacing the nearest-neighbor upsampling with the lightweight and universal CARAFE operator fully utilizes feature semantic information, enriches contextual information, and reduces information loss during transmission, thereby effectively improving the model's diversity and robustness. Finally, we constructed a dataset of bearing ring surface images collected from industrial sites and conducted numerous experiments based on this dataset. Experimental results show that the mean average precision (mAP) of the network is 97.3%, especially for dents and black spot defects, improved by 2.2% and 3.9%, respectively, and that the detection speed can reach 100 frames per second (FPS). Compared with mainstream surface defect detection algorithms, the proposed method shows significant improvements in both accuracy and detection time and can meet the requirements of industrial defect detection.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [22] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [23] Automatic Fabric Defect Detection Based on an Improved YOLOv5
    Jin, Rui
    Niu, Qiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [24] Insulator Defect Detection Based on Improved YOLOv5 Model
    Chen, Yongxin
    Du, Zhenan
    Li, Hengxuan
    Zhang, Kanjun
    Wen, Pei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 123 - 127
  • [25] Improved Plate Defect Detection Algorithm Based on YOLOv5
    Wang, Zijie
    Wang, Lan
    Zheng, Sihui
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 371 - 384
  • [26] Fabric defect detection algorithm based on improved YOLOv5
    Feng Li
    Kang Xiao
    Zhengpeng Hu
    Guozheng Zhang
    The Visual Computer, 2024, 40 : 2309 - 2324
  • [27] Insulator defect detection based on improved YOLOv5 algorithm
    Wang, Yongheng
    Li, Qin
    Liu, Yachong
    Wang, Chao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 770 - 775
  • [28] ST-CA YOLOv5: Improved YOLOv5 Based on Swin Transformer and Coordinate Attention for Surface Defect Detection
    Yang, Wen
    Wu, Hongjie
    Tang, Chenwei
    Lv, Jiancheng
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [29] Quality Defect Detection of Distribution Network Engineering Based on Lightweight Improved YOLOv5
    Yang L.
    Wang J.
    Duan X.
    Li J.
    Li Y.
    Li F.
    Dianwang Jishu/Power System Technology, 2023, 47 (09): : 3864 - 3872
  • [30] Surface Defect Detection Method of Wooden Spoon Based on Improved YOLOv5 Algorithm
    Tian, Siqing
    Li, Xiao
    Fang, Xiaolin
    Qi, Xiaozhong
    Li, Jichao
    BIORESOURCES, 2023, 18 (04) : 7713 - 7730