Surface Defect Detection for Automated Tape Laying and Winding Based on Improved YOLOv5

被引:0
|
作者
Wen, Liwei [1 ]
Li, Shihao [1 ]
Ren, Jiajun [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[2] Haiying Aerosp Mat Res Inst Suzhou Co Ltd, Suzhou 215100, Peoples R China
关键词
automated tape laying and winding; surface defect detection; YOLOv5;
D O I
10.3390/ma16155291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To address the issues of low detection accuracy, slow detection speed, high missed detection rate, and high false detection rate in the detection of surface defects on pre-impregnated composite materials during the automated tape laying and winding process, an improved YOLOv5 (You Only Look Once version 5) algorithm model was proposed to achieve the high-precision, real-time detection of surface defects. By leveraging this improvement, the necessity for frequent manual interventions, inspection interventions, and subsequent rework during the automated lay-up process of composite materials can be significantly reduced. Firstly, to improve the detection accuracy, an attention mechanism called "CA (coordinate attention)" was introduced to enhance the feature extraction ability, and a Separate CA structure was used to improve the detection speed. Secondly, we used an improved loss function "SIoU (SCYLLA-Intersection over Union) loss" to replace the original "CIoU (Complete-Intersection over Union) loss", which introduced an angle loss as a penalty term to consider the directional factor and improve the stability of the target box regression. Finally, Soft-SIoU-NMS was used to replace the original NMS (non-maximum suppression) of YOLOv5 to improve the detection of overlapping defects. The results showed that the improved model had a good detection performance for surface defects on pre-impregnated composite materials during the automated tape laying and winding process. The FPS (frames per second) increased from 66.7 to 72.1, and the mAP (mean average precision) of the test set increased from 92.6% to 97.2%. These improvements ensured that the detection accuracy, as measured by the mAP, surpassed 95%, while maintaining a detection speed of over 70 FPS, thereby meeting the requirements for real-time online detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [3] Metal surface defect detection based on improved YOLOv5
    Chuande Zhou
    Zhenyu Lu
    Zhongliang Lv
    Minghui Meng
    Yonghu Tan
    Kewen Xia
    Kang Liu
    Hailun Zuo
    Scientific Reports, 13
  • [4] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [5] Surface Defect Detection of Steel Products Based on Improved YOLOv5
    Liu, Yajiao
    Wang, Jiang
    Yu, Haitao
    Li, Fulong
    Yu, Lifeng
    Zhang, Chunhui
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5794 - 5799
  • [6] Aluminum Surface Defect Detection Algorithm Based on Improved YOLOv5
    Liang, Jianan
    Kong, Ruiling
    Ma, Rong
    Zhang, Jinhua
    Bian, Xingrui
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (02)
  • [7] An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection
    Han, Yixuan
    Zheng, Liying
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 90 - 101
  • [8] Research on tile surface defect detection by improved YOLOv5
    Yu, Xulong
    Yu, Qiancheng
    Zhang, Yue
    Wang, Aoqiang
    Wang, Jinyun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11319 - 11331
  • [9] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [10] Usage of an improved YOLOv5 for steel surface defect detection
    Wen, Huihui
    Li, Ying
    Wang, Yu
    Wang, Haoyang
    Li, Haolin
    Zhang, Hongye
    Liu, Zhanwei
    MATERIALS TESTING, 2024, 66 (05) : 726 - 735