Surface Defect Detection for Automated Tape Laying and Winding Based on Improved YOLOv5

被引:0
|
作者
Wen, Liwei [1 ]
Li, Shihao [1 ]
Ren, Jiajun [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[2] Haiying Aerosp Mat Res Inst Suzhou Co Ltd, Suzhou 215100, Peoples R China
关键词
automated tape laying and winding; surface defect detection; YOLOv5;
D O I
10.3390/ma16155291
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To address the issues of low detection accuracy, slow detection speed, high missed detection rate, and high false detection rate in the detection of surface defects on pre-impregnated composite materials during the automated tape laying and winding process, an improved YOLOv5 (You Only Look Once version 5) algorithm model was proposed to achieve the high-precision, real-time detection of surface defects. By leveraging this improvement, the necessity for frequent manual interventions, inspection interventions, and subsequent rework during the automated lay-up process of composite materials can be significantly reduced. Firstly, to improve the detection accuracy, an attention mechanism called "CA (coordinate attention)" was introduced to enhance the feature extraction ability, and a Separate CA structure was used to improve the detection speed. Secondly, we used an improved loss function "SIoU (SCYLLA-Intersection over Union) loss" to replace the original "CIoU (Complete-Intersection over Union) loss", which introduced an angle loss as a penalty term to consider the directional factor and improve the stability of the target box regression. Finally, Soft-SIoU-NMS was used to replace the original NMS (non-maximum suppression) of YOLOv5 to improve the detection of overlapping defects. The results showed that the improved model had a good detection performance for surface defects on pre-impregnated composite materials during the automated tape laying and winding process. The FPS (frames per second) increased from 66.7 to 72.1, and the mAP (mean average precision) of the test set increased from 92.6% to 97.2%. These improvements ensured that the detection accuracy, as measured by the mAP, surpassed 95%, while maintaining a detection speed of over 70 FPS, thereby meeting the requirements for real-time online detection.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] RESEARCH ON SURFACE DEFECT DETECTION OF SOLAR CELL WITH IMPROVED YOLOv5 ALGORITHM
    Peng Z.
    Zhang Y.
    Xiao S.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 368 - 375
  • [42] Surface Defect Detection Model for Aero-Engine Components Based on Improved YOLOv5
    Li, Xin
    Wang, Cheng
    Ju, Haijuan
    Li, Zhuoyue
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [43] Strip steel surface defect detection based on lightweight YOLOv5
    Zhang, Yongping
    Shen, Sijie
    Xu, Sen
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [44] Solar Cell Surface Defect Detection Based on Optimized YOLOv5
    Lu, Sha
    Wu, Kaixing
    Chen, Jinxin
    IEEE ACCESS, 2023, 11 : 71026 - 71036
  • [45] Improved YOLOv5 Based on the Mobilevit Backbone for the Detection of Steel Surface Defects Improved YOLOv5 based on the mobilevit backbone and BiFPN
    Qiu, Kun
    Wang, Changkun
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 305 - 309
  • [46] The Hull Structure and Defect Detection Based on Improved YOLOv5 for Mobile Platform
    Zhou, Jian
    Li, Weixing
    Fang, Haoyu
    Zhang, Yu
    Pan, Feng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6392 - 6397
  • [47] Defect detection of light guide plate based on improved YOLOv5 networks
    Xiao, Ming
    Gong, Yefei
    Wang, Hongding
    Lu, Mingli
    Gao, Hua
    OPTOELECTRONICS LETTERS, 2024, 20 (09) : 560 - 567
  • [48] A bolt defect detection method for transmission lines based on improved YOLOv5
    Zou, Hongbo
    Sun, Jialun
    Ye, Ziyong
    Yang, Jinlong
    Yang, Changhua
    Li, Fengyang
    Xiong, Li
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [49] YOLO-DD: Improved YOLOv5 for Defect Detection
    Wang, Jinhai
    Wang, Wei
    Zhang, Zongyin
    Lin, Xuemin
    Zhao, Jingxian
    Chen, Mingyou
    Luo, Lufeng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 759 - 780
  • [50] Lightweight improved YOLOv5 algorithm for PCB defect detection
    Xie, Yinggang
    Zhao, Yanwei
    Journal of Supercomputing, 2025, 81 (01):