An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection

被引:0
|
作者
Han, Yixuan [1 ]
Zheng, Liying [1 ]
机构
[1] Harbin Engn Univ, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
YOLOv5; Re-parameterization; Coordinate Attention; Defect; Detection;
D O I
10.1007/978-3-031-44210-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surface defects produced by the manufacturing process directly degrades the quality of industrialmaterials such as hot-rolled steel. However, existing methods for detecting surface defects cannot meet the requirements in terms of speed and accuracy. Based on structural re-parameterization, coordinate attention (CA) mechanism, and an additional detection head, we propose an improved YOLOv5 model for detecting surface defects of steel plates. Firstly, using the technique of structural re-parameterization in RepVGGBlock, the multi-channel structure of the training backbone network is converted to a single-channel structure of the inference network. This allows the network to speed up its inference while maintaining detection accuracy. Secondly, CA is integrated into the detection head to further improve detection accuracy. Finally, a layer of detection head is added at the end of the network to focus on detecting small targets. The experimental results on theNortheastern University (NEU) surface defect database show that, our model is superior to the state-of-the-art detectors, such as the original YOLOv5, Fast-RCNN in accuracy and speed.
引用
收藏
页码:90 / 101
页数:12
相关论文
共 50 条
  • [1] Research on tile surface defect detection by improved YOLOv5
    Yu, Xulong
    Yu, Qiancheng
    Zhang, Yue
    Wang, Aoqiang
    Wang, Jinyun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11319 - 11331
  • [2] Usage of an improved YOLOv5 for steel surface defect detection
    Wen, Huihui
    Li, Ying
    Wang, Yu
    Wang, Haoyang
    Li, Haolin
    Zhang, Hongye
    Liu, Zhanwei
    MATERIALS TESTING, 2024, 66 (05) : 726 - 735
  • [3] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [4] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [6] Metal surface defect detection based on improved YOLOv5
    Chuande Zhou
    Zhenyu Lu
    Zhongliang Lv
    Minghui Meng
    Yonghu Tan
    Kewen Xia
    Kang Liu
    Hailun Zuo
    Scientific Reports, 13
  • [7] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [8] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [9] Improved Yolov5 Algorithm for Surface Defect Detection of Solar Cell
    Li, Pengjie
    Shan, Shuo
    Zeng, Pengzhong
    Wei, Haikun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3601 - 3605
  • [10] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870