Improved YOLOv5 Network for Steel Surface Defect Detection

被引:6
|
作者
Huang, Bo [1 ]
Liu, Jianhong [1 ]
Liu, Xiang [1 ]
Liu, Kang [1 ]
Liao, Xinyu [1 ]
Li, Kun [1 ]
Wang, Jian [1 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Mech Engn, Yibin 644000, Peoples R China
关键词
YOLOv5; deformable convolution; attention mechanism; Focal EIOU; K-means;
D O I
10.3390/met13081439
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Steel surface defect detection is crucial for ensuring steel quality. The traditional detection algorithm has low detection probability. This paper proposes an improved algorithm based on the YOLOv5 model to enhance detection probability. Firstly, deformable convolution is introduced in the backbone network, and a traditional convolution module is replaced by deformable convolution; secondly, the CBAM attention mechanism is added to the backbone network; then, Focal EIOU is used instead of the CIOU loss function in YOLOv5; lastly, the K-means algorithm is used to cluster the Anchor box, and the Anchor box parameters that are more suitable for this paper are obtained. The experimental results show that using deformable convolution instead of traditional convolution can get more feature information, which is more conducive to the learning of the network. This paper uses the CBAM attention mechanism, and the heat map of the attention mechanism shows that the CBAM attention mechanism is beneficial for feature extraction. Focal EIOU is optimized in high and wide loss compared with the CIOU loss function, which accelerates the convergence of the model. The Anchor box is more favorable for feature extraction. The improved algorithm achieved a detection probability of 78.8% in the NEU-DET dataset, which is 4.3% better than the original YOLOv5 network, and the inference time of each image is only increased by 1 ms; therefore, the optimized algorithm proposed in this paper is effective.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Usage of an improved YOLOv5 for steel surface defect detection
    Wen, Huihui
    Li, Ying
    Wang, Yu
    Wang, Haoyang
    Li, Haolin
    Zhang, Hongye
    Liu, Zhanwei
    MATERIALS TESTING, 2024, 66 (05) : 726 - 735
  • [2] An Improved YOLOv5 Algorithm for Steel Surface Defect Detection
    Li Shaoxiong
    Shi Zaifeng
    Kong Fanning
    Wang Ruoqi
    Luo Tao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (24)
  • [3] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [4] Surface Defect Detection of Steel Products Based on Improved YOLOv5
    Liu, Yajiao
    Wang, Jiang
    Yu, Haitao
    Li, Fulong
    Yu, Lifeng
    Zhang, Chunhui
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5794 - 5799
  • [5] Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network
    Xu, Haitao
    Pan, Haipeng
    Li, Junfeng
    SENSORS, 2023, 23 (17)
  • [6] Improved YOLOv5 Network for Aviation Plug Defect Detection
    Ji, Li
    Huang, Chaohang
    AEROSPACE, 2024, 11 (06)
  • [7] An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection
    Han, Yixuan
    Zheng, Liying
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 90 - 101
  • [8] Research on tile surface defect detection by improved YOLOv5
    Yu, Xulong
    Yu, Qiancheng
    Zhang, Yue
    Wang, Aoqiang
    Wang, Jinyun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11319 - 11331
  • [9] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [10] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):