Surface Defect Detection of Bearing Rings Based on an Improved YOLOv5 Network

被引:7
|
作者
Xu, Haitao [1 ,2 ]
Pan, Haipeng [1 ,2 ]
Li, Junfeng [1 ,2 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Informat Sci & Engn, Hangzhou 310018, Peoples R China
[2] Zhejiang Sci Tech Univ, Changshan Res Inst, Quzhou 324299, Peoples R China
关键词
bearing ring; surface defect detection; deep learning; YOLOv5;
D O I
10.3390/s23177443
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Considering the characteristics of complex texture backgrounds, uneven brightness, varying defect sizes, and multiple defect types of the bearing surface images, a surface defect detection method for bearing rings is proposed based on improved YOLOv5. First, replacing the C3 module in the backbone network with a C2f module can effectively reduce the number of network parameters and computational complexity, thereby improving the speed and accuracy of the backbone network. Second, adding the SPD module into the backbone and neck networks enhances their ability to process low-resolution and small-object images. Next, replacing the nearest-neighbor upsampling with the lightweight and universal CARAFE operator fully utilizes feature semantic information, enriches contextual information, and reduces information loss during transmission, thereby effectively improving the model's diversity and robustness. Finally, we constructed a dataset of bearing ring surface images collected from industrial sites and conducted numerous experiments based on this dataset. Experimental results show that the mean average precision (mAP) of the network is 97.3%, especially for dents and black spot defects, improved by 2.2% and 3.9%, respectively, and that the detection speed can reach 100 frames per second (FPS). Compared with mainstream surface defect detection algorithms, the proposed method shows significant improvements in both accuracy and detection time and can meet the requirements of industrial defect detection.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Improved YOLOv5 Network for Steel Surface Defect Detection
    Huang, Bo
    Liu, Jianhong
    Liu, Xiang
    Liu, Kang
    Liao, Xinyu
    Li, Kun
    Wang, Jian
    METALS, 2023, 13 (08)
  • [2] Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5
    Yuan T.-L.
    Yuan J.-L.
    Zhu Y.-J.
    Zheng H.-C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (12): : 2349 - 2357
  • [3] Metal surface defect detection based on improved YOLOv5
    Zhou, Chuande
    Lu, Zhenyu
    Lv, Zhongliang
    Meng, Minghui
    Tan, Yonghu
    Xia, Kewen
    Liu, Kang
    Zuo, Hailun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Surface Defect Detection of Preform Based on Improved YOLOv5
    Hou, Jiatong
    You, Bo
    Xu, Jiazhong
    Wang, Tao
    Cao, Moran
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [5] Metal surface defect detection based on improved YOLOv5
    Chuande Zhou
    Zhenyu Lu
    Zhongliang Lv
    Minghui Meng
    Yonghu Tan
    Kewen Xia
    Kang Liu
    Hailun Zuo
    Scientific Reports, 13
  • [6] GRP-YOLOv5: An Improved Bearing Defect Detection Algorithm Based on YOLOv5
    Zhao, Yue
    Chen, Bolun
    Liu, Bushi
    Yu, Cuiying
    Wang, Ling
    Wang, Shanshan
    SENSORS, 2023, 23 (17)
  • [7] Surface defect detection of steel based on improved YOLOv5 algorithm
    Jiang, Yiwen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (11) : 19858 - 19870
  • [8] Surface Defect Detection of Steel Products Based on Improved YOLOv5
    Liu, Yajiao
    Wang, Jiang
    Yu, Haitao
    Li, Fulong
    Yu, Lifeng
    Zhang, Chunhui
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5794 - 5799
  • [9] Research on Bearing Surface Scratch Detection Based on Improved YOLOV5
    Jia, Huakun
    Zhou, Huimin
    Chen, Zhehao
    Gao, Rongke
    Lu, Yang
    Yu, Liandong
    SENSORS, 2024, 24 (10)
  • [10] Aluminum Surface Defect Detection Algorithm Based on Improved YOLOv5
    Liang, Jianan
    Kong, Ruiling
    Ma, Rong
    Zhang, Jinhua
    Bian, Xingrui
    ADVANCED THEORY AND SIMULATIONS, 2024, 7 (02)