Improved YOLOv5 Network for Steel Surface Defect Detection

被引:6
|
作者
Huang, Bo [1 ]
Liu, Jianhong [1 ]
Liu, Xiang [1 ]
Liu, Kang [1 ]
Liao, Xinyu [1 ]
Li, Kun [1 ]
Wang, Jian [1 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Mech Engn, Yibin 644000, Peoples R China
关键词
YOLOv5; deformable convolution; attention mechanism; Focal EIOU; K-means;
D O I
10.3390/met13081439
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Steel surface defect detection is crucial for ensuring steel quality. The traditional detection algorithm has low detection probability. This paper proposes an improved algorithm based on the YOLOv5 model to enhance detection probability. Firstly, deformable convolution is introduced in the backbone network, and a traditional convolution module is replaced by deformable convolution; secondly, the CBAM attention mechanism is added to the backbone network; then, Focal EIOU is used instead of the CIOU loss function in YOLOv5; lastly, the K-means algorithm is used to cluster the Anchor box, and the Anchor box parameters that are more suitable for this paper are obtained. The experimental results show that using deformable convolution instead of traditional convolution can get more feature information, which is more conducive to the learning of the network. This paper uses the CBAM attention mechanism, and the heat map of the attention mechanism shows that the CBAM attention mechanism is beneficial for feature extraction. Focal EIOU is optimized in high and wide loss compared with the CIOU loss function, which accelerates the convergence of the model. The Anchor box is more favorable for feature extraction. The improved algorithm achieved a detection probability of 78.8% in the NEU-DET dataset, which is 4.3% better than the original YOLOv5 network, and the inference time of each image is only increased by 1 ms; therefore, the optimized algorithm proposed in this paper is effective.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] DDVC-YOLOv5: An Improved YOLOv5 Model for Road Defect Detection
    Zhong, Shihao
    Chen, Chunlin
    Luo, Wensheng
    Chen, Siyuan
    IEEE ACCESS, 2024, 12 : 134008 - 134019
  • [32] Fabric defect detection algorithm based on improved YOLOv5
    Li, Feng
    Xiao, Kang
    Hu, Zhengpeng
    Zhang, Guozheng
    VISUAL COMPUTER, 2024, 40 (04): : 2309 - 2324
  • [33] YOLO-DD: Improved YOLOv5 for Defect Detection
    Wang, Jinhai
    Wang, Wei
    Zhang, Zongyin
    Lin, Xuemin
    Zhao, Jingxian
    Chen, Mingyou
    Luo, Lufeng
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (01): : 759 - 780
  • [34] Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm
    Yang, Xinan
    Gao, Sen
    Xia, Chen
    Zhang, Bo
    Chen, Rui
    Gao, Jie
    Zhu, Wenkui
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 99 - 106
  • [35] Lightweight improved YOLOv5 algorithm for PCB defect detection
    Xie, Yinggang
    Zhao, Yanwei
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [36] Quality Defect Detection of Distribution Network Engineering Based on Lightweight Improved YOLOv5
    Yang L.
    Wang J.
    Duan X.
    Li J.
    Li Y.
    Li F.
    Dianwang Jishu/Power System Technology, 2023, 47 (09): : 3864 - 3872
  • [37] Automatic Fabric Defect Detection Based on an Improved YOLOv5
    Jin, Rui
    Niu, Qiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [38] Insulator Defect Detection Based on Improved YOLOv5 Model
    Chen, Yongxin
    Du, Zhenan
    Li, Hengxuan
    Zhang, Kanjun
    Wen, Pei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 123 - 127
  • [39] Improved YOLOv5 Network for Agricultural Pest Detection
    Yu, Yan
    Sun, Tian
    Yan, Jin
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [40] Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5
    Yuan T.-L.
    Yuan J.-L.
    Zhu Y.-J.
    Zheng H.-C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (12): : 2349 - 2357