An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection

被引:0
|
作者
Han, Yixuan [1 ]
Zheng, Liying [1 ]
机构
[1] Harbin Engn Univ, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
YOLOv5; Re-parameterization; Coordinate Attention; Defect; Detection;
D O I
10.1007/978-3-031-44210-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surface defects produced by the manufacturing process directly degrades the quality of industrialmaterials such as hot-rolled steel. However, existing methods for detecting surface defects cannot meet the requirements in terms of speed and accuracy. Based on structural re-parameterization, coordinate attention (CA) mechanism, and an additional detection head, we propose an improved YOLOv5 model for detecting surface defects of steel plates. Firstly, using the technique of structural re-parameterization in RepVGGBlock, the multi-channel structure of the training backbone network is converted to a single-channel structure of the inference network. This allows the network to speed up its inference while maintaining detection accuracy. Secondly, CA is integrated into the detection head to further improve detection accuracy. Finally, a layer of detection head is added at the end of the network to focus on detecting small targets. The experimental results on theNortheastern University (NEU) surface defect database show that, our model is superior to the state-of-the-art detectors, such as the original YOLOv5, Fast-RCNN in accuracy and speed.
引用
收藏
页码:90 / 101
页数:12
相关论文
共 50 条
  • [31] Insulator Defect Detection Based on Improved YOLOv5 Model
    Chen, Yongxin
    Du, Zhenan
    Li, Hengxuan
    Zhang, Kanjun
    Wen, Pei
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 123 - 127
  • [32] Surface defect detection algorithm of thrust ball bearing based on improved YOLOv5
    Yuan T.-L.
    Yuan J.-L.
    Zhu Y.-J.
    Zheng H.-C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (12): : 2349 - 2357
  • [33] Surface Defect Detection Method of Wooden Spoon Based on Improved YOLOv5 Algorithm
    Tian, Siqing
    Li, Xiao
    Fang, Xiaolin
    Qi, Xiaozhong
    Li, Jichao
    BIORESOURCES, 2023, 18 (04) : 7713 - 7730
  • [34] Improved Plate Defect Detection Algorithm Based on YOLOv5
    Wang, Zijie
    Wang, Lan
    Zheng, Sihui
    IOT AS A SERVICE, IOTAAS 2023, 2025, 585 : 371 - 384
  • [35] Fabric defect detection algorithm based on improved YOLOv5
    Feng Li
    Kang Xiao
    Zhengpeng Hu
    Guozheng Zhang
    The Visual Computer, 2024, 40 : 2309 - 2324
  • [36] Aero-Engine Surface Defect Detection Model Based on Improved YOLOv5
    Li, Xin
    Li, Xiangrong
    Wang, Cheng
    Li, Qiuliang
    Li, Zhuoyue
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (16)
  • [37] Insulator defect detection based on improved YOLOv5 algorithm
    Wang, Yongheng
    Li, Qin
    Liu, Yachong
    Wang, Chao
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 770 - 775
  • [38] Research on Improved YOLOv5 Pipeline Defect Detection Algorithm
    Zeng, Jiangchao
    Zheng, Yiming
    Jin, Xinping
    Lin, Jinhong
    Feng, Yonghao
    JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE, 2025, 16 (02)
  • [39] Improved YOLOv5 Network for Aviation Plug Defect Detection
    Ji, Li
    Huang, Chaohang
    AEROSPACE, 2024, 11 (06)
  • [40] Bearing defect detection based on the improved YOLOv5 algorithm
    Li, Kangning
    Jiao, Peigang
    Ding, Jiaming
    Du, Weibo
    PLOS ONE, 2024, 19 (10):