Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications

被引:8
|
作者
Hu, Chunyi [1 ,4 ,5 ]
Myers, Mason T. [2 ]
Zhou, Xufei [2 ]
Hou, Zhonggang [2 ]
Lozen, Macy L. [2 ]
Nam, Ki Hyun [3 ]
Zhang, Yan [2 ]
Ke, Ailong [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, 253 Biotechnol Bldg, Ithaca, NY 14853 USA
[2] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[3] Kookmin Univ, Coll Gen Educ, Seoul 02707, South Korea
[4] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117597, Singapore
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Precis Med Translat Res Programme TRP, Singapore 117597, Singapore
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GUIDED SURVEILLANCE COMPLEX; R-LOOP FORMATION; ANTI-CRISPR; EVOLUTIONARY CLASSIFICATION; VITRO RECONSTITUTION; STRUCTURE REVEALS; CRYSTAL-STRUCTURE; RNA CLEAVAGE; CAS SYSTEMS; DNA;
D O I
10.1016/j.molcel.2023.12.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type I CRISPR-Cas systems utilize the RNA -guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I -C is compact in size and highly active in creating large -sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA -guided DNA binding and cleavage mechanisms in high resolution. The non -target DNA strand (NTS) is accommodated by I -C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I -C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I -C -mediated genome editing and transcriptional modulation in human cells, providing the first off -switches for type I CRISPR eukaryotic genome engineering.
引用
收藏
页码:463 / 475.e5
页数:19
相关论文
共 50 条
  • [11] Genome-editing applications of CRISPR-Cas9 to promote in vitro studies of Alzheimer's disease
    Giau, Vo Van
    Lee, Hyon
    Shim, Kyu Hwan
    Bagyinszky, Eva
    An, Seong Soo A.
    CLINICAL INTERVENTIONS IN AGING, 2018, 13 : 221 - 233
  • [12] Highly efficient genome editing in Xanthomonas oryzae pv. oryzae through repurposing the endogenous type I-C CRISPR-Cas system
    Jiang, Dandan
    Zhang, Dandan
    Li, Shengnan
    Liang, Yueting
    Zhang, Qianwei
    Qin, Xu
    Gao, Jinlan
    Qiu, Jin-Long
    MOLECULAR PLANT PATHOLOGY, 2022, 23 (04) : 583 - 594
  • [13] Harnessing Type I and Type III CRISPR-Cas systems for genome editing
    Li, Yingjun
    Pan, Saifu
    Zhang, Yan
    Ren, Min
    Feng, Mingxia
    Peng, Nan
    Chen, Lanming
    Liang, Yun Xiang
    She, Qunxin
    NUCLEIC ACIDS RESEARCH, 2016, 44 (04)
  • [14] Structure and genome editing of type I-B CRISPR-Cas
    Lu, Meiling
    Yu, Chenlin
    Zhang, Yuwen
    Ju, Wenjun
    Ye, Zhi
    Hua, Chenyang
    Mao, Jinze
    Hu, Chunyi
    Yang, Zhenhuang
    Xiao, Yibei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [15] Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine
    Khoshandam, Mohadeseh
    Soltaninejad, Hossein
    Mousazadeh, Marziyeh
    Hamidieh, Amir Ali
    Hosseinkhani, Saman
    GENES & DISEASES, 2024, 11 (01) : 268 - 282
  • [16] An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications
    Fatima Akram
    Sania Sahreen
    Farheen Aamir
    Ikram ul Haq
    Kausar Malik
    Memoona Imtiaz
    Waqas Naseem
    Narmeen Nasir
    Hafiza Mariam Waheed
    Molecular Biotechnology, 2023, 65 : 227 - 242
  • [17] An Insight into Modern Targeted Genome-Editing Technologies with a Special Focus on CRISPR/Cas9 and its Applications
    Akram, Fatima
    Sahreen, Sania
    Aamir, Farheen
    ul Haq, Ikram
    Malik, Kausar
    Imtiaz, Memoona
    Naseem, Waqas
    Nasir, Narmeen
    Waheed, Hafiza Mariam
    MOLECULAR BIOTECHNOLOGY, 2023, 65 (02) : 227 - 242
  • [18] CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications
    Ebrahimi, Sahar
    Khosravi, Mohammad Ali
    Raz, Abbasali
    Karimipoor, Morteza
    Parvizi, Parviz
    IRANIAN BIOMEDICAL JOURNAL, 2023, 27 (05) : 219 - 246
  • [19] Miniature CRISPR-Cas12 Systems: Mechanisms, Engineering, and Genome Editing Applications
    Tang, Na
    Ji, Quanjiang
    ACS CHEMICAL BIOLOGY, 2024, 19 (07) : 1399 - 1408
  • [20] Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications
    Zhou, Lifang
    Yao, Shaohua
    MOLECULAR BIOMEDICINE, 2023, 4 (01):