Harnessing Type I and Type III CRISPR-Cas systems for genome editing

被引:142
|
作者
Li, Yingjun [1 ]
Pan, Saifu [1 ]
Zhang, Yan [1 ]
Ren, Min [1 ]
Feng, Mingxia [1 ]
Peng, Nan [1 ]
Chen, Lanming [2 ,3 ]
Liang, Yun Xiang [1 ]
She, Qunxin [1 ,4 ]
机构
[1] Huazhong Agr Univ, Coll Life Sci & Technol, State Key Lab Agr Microbiol, Wuhan 430070, Hubei, Peoples R China
[2] China Minist Agr, Key Lab Qual & Safety Risk Assessment Aquat Prod, 999 Hu Cheng Huan Rd, Shanghai 201306, Peoples R China
[3] Shanghai Ocean Univ, Coll Food Sci & Technol, 999 Hu Cheng Huan Rd, Shanghai 201306, Peoples R China
[4] Univ Copenhagen, Dept Biol, Archaea Ctr, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
关键词
ARCHAEON SULFOLOBUS-SOLFATARICUS; SEQUENCE-SPECIFIC ANTIMICROBIALS; MEDIATED VIRUS DEFENSE; ADAPTIVE IMMUNITY; GENUS SULFOLOBUS; HYPERTHERMOPHILIC ARCHAEON; DYNAMIC PROPERTIES; CRYSTAL-STRUCTURE; RNA INTERFERENCE; DUAL-RNA;
D O I
10.1093/nar/gkv1044
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are widespread in archaea and bacteria, and research on their molecular mechanisms has led to the development of genome-editing techniques based on a few Type II systems. However, there has not been any report on harnessing a Type I or Type III system for genome editing. Here, a method was developed to repurpose both CRISPR-Cas systems for genetic manipulation in Sulfolobus islandicus, a thermophilic archaeon. A novel type of genome-editing plasmid (pGE) was constructed, carrying an artificial mini-CRISPR array and a donor DNA containing a non-target sequence. Transformation of a pGE plasmid would yield two alternative fates to transformed cells: wild-type cells are to be targeted for chromosomal DNA degradation, leading to cell death, whereas those carrying the mutant gene would survive the cell killing and selectively retained as transformants. Using this strategy, different types of mutation were generated, including deletion, insertion and point mutations. We envision this method is readily applicable to different bacteria and archaea that carry an active CRISPR-Cas system of DNA interference provided the protospacer adjacent motif (PAM) of an uncharacterized PAM-dependent CRISPR-Cas system can be predicted by bioinformatic analysis.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Harnessing CRISPR-Cas systems for bacterial genome editing
    Selle, Kurt
    Barrangou, Rodolphe
    [J]. TRENDS IN MICROBIOLOGY, 2015, 23 (04) : 225 - 232
  • [2] Harnessing type I CRISPR-Cas systems for genome engineering in human cells
    Cameron, Peter
    Coons, Mary M.
    Klompe, Sanne E.
    Lied, Alexandra M.
    Smith, Stephen C.
    Vidal, Bastien
    Donohoue, Paul D.
    Rotstein, Tomer
    Kohrs, Bryan W.
    Nyer, David B.
    Kennedy, Rachel
    Banh, Lynda M.
    Williams, Carolyn
    Toh, Mckenzi S.
    Irby, Matthew J.
    Edwards, Leslie S.
    Lin, Chun-Han
    Owen, Arthur L. G.
    Kunne, Tim
    van der Oost, John
    Brouns, Stan J. J.
    Slorach, Euan M.
    Fuller, Chris K.
    Gradia, Scott
    Kanner, Steven B.
    May, Andrew P.
    Sternberg, Samuel H.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1471 - +
  • [3] Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing
    Wang, Shuliu
    Zeng, Xiaoqian
    Jiang, Yue
    Wang, Weishan
    Bai, Linquan
    Lu, Yinhua
    Zhang, Lixin
    Tan, Gao-Yi
    [J]. NATURAL PRODUCT REPORTS, 2024, 41 (09) : 1441 - 1455
  • [4] Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon
    Feiyue Cheng
    Luyao Gong
    Dahe Zhao
    Haibo Yang
    Jian Zhou
    Ming Li
    Hua Xiang
    [J]. Journal of Genetics and Genomics, 2017, 44 (11) : 541 - 548
  • [5] Harnessing the native type I-B CRISPR-Cas for genome editing in a polyploid archaeon
    Cheng, Feiyue
    Gong, Luyao
    Zhao, Dahe
    Yang, Haibo
    Zhou, Jian
    Li, Ming
    Xiang, Hua
    [J]. JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (11) : 541 - 548
  • [6] Harnessing CRISPR-Cas for oomycete genome editing
    Vink, Jochem N. A.
    Hayhurst, Max
    Gerth, Monica L.
    [J]. TRENDS IN MICROBIOLOGY, 2023, 31 (09) : 947 - 958
  • [7] Harnessing the endogenous Type I-C CRISPR-Cas system for genome editing in Bifidobacterium breve
    Han, Xiao
    Chang, Lulu
    Chen, Haiqin
    Zhao, Jianxin
    Tian, Fengwei
    Ross, R. Paul
    Stanton, Catherine
    van Sinderen, Douwe
    Chen, Wei
    Yang, Bo
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2024, 90 (03)
  • [8] Structure and genome editing of type I-B CRISPR-Cas
    Lu, Meiling
    Yu, Chenlin
    Zhang, Yuwen
    Ju, Wenjun
    Ye, Zhi
    Hua, Chenyang
    Mao, Jinze
    Hu, Chunyi
    Yang, Zhenhuang
    Xiao, Yibei
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [9] High-efficiency genome editing of an extreme thermophile Thermus thermophilus using endogenous type I and type III CRISPR-Cas systems
    Wang, Jinting
    Wei, Junwei
    Li, Haijuan
    Li, Yingjun
    [J]. MLIFE, 2022, 1 (04): : 412 - 427
  • [10] Harnessing the Native Type I-F CRISPR-Cas System of Acinetobacter baumannii for Genome Editing and Gene Repression
    Yao, Shigang
    Wu, Xinyi
    Li, Yi
    Song, Yuqin
    Wang, Chao
    Zhang, Gang
    Feng, Jie
    [J]. INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2023, 62 (05)