Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications

被引:8
|
作者
Hu, Chunyi [1 ,4 ,5 ]
Myers, Mason T. [2 ]
Zhou, Xufei [2 ]
Hou, Zhonggang [2 ]
Lozen, Macy L. [2 ]
Nam, Ki Hyun [3 ]
Zhang, Yan [2 ]
Ke, Ailong [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, 253 Biotechnol Bldg, Ithaca, NY 14853 USA
[2] Univ Michigan, Dept Biol Chem, Ann Arbor, MI 48109 USA
[3] Kookmin Univ, Coll Gen Educ, Seoul 02707, South Korea
[4] Natl Univ Singapore, Fac Sci, Dept Biol Sci, Singapore 117597, Singapore
[5] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, Precis Med Translat Res Programme TRP, Singapore 117597, Singapore
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GUIDED SURVEILLANCE COMPLEX; R-LOOP FORMATION; ANTI-CRISPR; EVOLUTIONARY CLASSIFICATION; VITRO RECONSTITUTION; STRUCTURE REVEALS; CRYSTAL-STRUCTURE; RNA CLEAVAGE; CAS SYSTEMS; DNA;
D O I
10.1016/j.molcel.2023.12.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type I CRISPR-Cas systems utilize the RNA -guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I -C is compact in size and highly active in creating large -sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA -guided DNA binding and cleavage mechanisms in high resolution. The non -target DNA strand (NTS) is accommodated by I -C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I -C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I -C -mediated genome editing and transcriptional modulation in human cells, providing the first off -switches for type I CRISPR eukaryotic genome engineering.
引用
收藏
页码:463 / 475.e5
页数:19
相关论文
共 50 条
  • [41] Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells
    Guo, Jing
    Gong, Luyao
    Yu, Haiying
    Li, Ming
    An, Qiaohui
    Liu, Zhenquan
    Fan, Shuru
    Yang, Changjialian
    Zhao, Dahe
    Han, Jing
    Xiang, Hua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [42] Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces
    Xie, Yuhui
    Liu, Xiaoyan
    Wu, Tingting
    Luo, Yunzi
    SCIENCE CHINA-LIFE SCIENCES, 2025, : 1174 - 1182
  • [43] A Porphyromonas gingivalis hypothetical protein controlled by the type I-C CRISPR-Cas system is a novel adhesin important in virulence
    Irfan, Muhammad
    Solbiati, Jose
    Duran-Pinedo, Ana
    Rocha, Fernanda Godoy
    Gibson III, Frank C.
    Frias-Lopez, Jorge
    MSYSTEMS, 2024, 9 (03)
  • [44] Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum
    Walker, Julie E.
    Lanahan, Anthony A.
    Zheng, Tianyong
    Toruno, Camilo
    Lynd, Lee R.
    Cameron, Jeffrey C.
    Olson, Daniel G.
    Eckert, Carrie A.
    METABOLIC ENGINEERING COMMUNICATIONS, 2020, 10
  • [45] Genome editing with type II-C CRISPR-Cas9 systems from Neisseria meningitidis in rice
    Xu, Rongfang
    Qin, Ruiying
    Xie, Hongjun
    Li, Juan
    Liu, Xiaoshuang
    Zhu, Mingdong
    Sun, Yang
    Yu, Yinghong
    Lu, Pingli
    Wei, Pengcheng
    PLANT BIOTECHNOLOGY JOURNAL, 2022, 20 (02) : 350 - 359
  • [46] Oral Microto-Nano Genome-Editing System Enabling Targeted Delivery and Conditional Activation of CRISPR-Cas9 for Gene Therapy of Inflammatory Bowel Disease
    Lin, Sicen
    Han, Shuwen
    Wang, Xu
    Wang, Xinyue
    Shi, Xianbao
    He, Zhonggui
    Sun, Mengchi
    Sun, Jin
    ACS NANO, 2024, 18 (37) : 25657 - 25670
  • [47] Harnessing the Native Type I-F CRISPR-Cas System of Acinetobacter baumannii for Genome Editing and Gene Repression
    Yao, Shigang
    Wu, Xinyi
    Li, Yi
    Song, Yuqin
    Wang, Chao
    Zhang, Gang
    Feng, Jie
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2023, 62 (05)
  • [48] Endogenous Type I-C CRISPR-Cas system of Streptococcus equi subsp. zooepidemicus promotes biofilm formation and pathogenicity
    Xie, Honglin
    Zhang, Riteng
    Li, Ziyuan
    Guo, Ruhai
    Li, Junda
    Fu, Qiang
    Wang, Xinglong
    Zhou, Yefei
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [49] CRISPR-Cas3 and type I restriction-modification team up against blaKPC-IncF plasmid transfer in Klebsiella pneumoniae
    Yang, Yang
    Zhou, Peiyao
    Tian, Dongxing
    Wang, Weiwen
    Zhou, Ying
    Jiang, Xiaofei
    BMC MICROBIOLOGY, 2024, 24 (01):
  • [50] Active site plasticity enables metal-dependent tuning of Cas5d nuclease activity in CRISPR-Cas type I-C system
    Punetha, Ankita
    Sivathanu, Raveendran
    Anand, Baskaran
    NUCLEIC ACIDS RESEARCH, 2014, 42 (06) : 3846 - 3856